
ACP / 2
Michael Glienecke, PhD



Welcome again

• Architectural styles

• Communication protocols / patterns / methods

• A bit about containerization

• Introduction to microservices

• JSON

• REST in more detail

• REST techniques



Architectural styles (not all…)

• Monolith
• Single process

• Modular

• Distributed

• Service oriented architectures (SOA)
• Services collaborate to achieve some capabilities

• Often shared databases

• Larger logical blocks ("services") 

• Scaling often only on the service-level
• not the service as such on several nodes / services often cannot be spread out 



Architectural styles /2

• Microservices
• Simple

• Meshes

• Flow / Event-driven



Monolith vs Service oriented



Point to point - mesh

https://livebook.manning.com/book/microservices-patterns/chapter-1/106



Flow Architecture



Event based architectures /2

https://eu01.alma.exlibrisgroup.com/leganto/public/44UOE_INST/citation/45644351890002466?auth=SAML



Containerization - how

• OCI based
• https://opencontainers.org/about/overview/

• https://opencontainers.org/community/overview/

• Images form the runnable applications

• Are loaded on demand

• Executed when needed

• All networking is mapped

• File system access is mapped to volumes 

https://opencontainers.org/about/overview/
https://opencontainers.org/about/overview/
https://opencontainers.org/community/overview/
https://opencontainers.org/community/overview/


docker

https://www.cherryservers.com/blog/a-complete-overview-of-docker-architecture



Runtime

Image

A microservice in docker

Service

808
0

/var/mySpace

500
0

Local disk

https://myServer:5000/resource

map

map



Running a microservice in docker

• One service / image

• Sidecar as an option



Kubernetes

https://www.simform.com/blog/kubernetes-architecture/



Communication protocols

• Request - Response
• gRPC
• http native
• SOAP
• REST
• GraphQL

• Messaging 
• Kafka
• MQTT
• Pulsar
• AMQP (RabbitMQ, …)



General

• REST <> http

• REST is
• Uniform
• Stateless
• Client-Server
• Cacheable 

• URL
• Syntax: https://www.w3.org/Addressing/URL/url-

spec.html#:~:text=URL%20syntax,in%20an%20a%20later%20section. 

• BNF: https://www.w3.org/Addressing/URL/5_BNF.html 

https://www.w3.org/Addressing/URL/url-spec.html#:~:text=URL%20syntax,in%20an%20a%20later%20section
https://www.w3.org/Addressing/URL/url-spec.html#:~:text=URL%20syntax,in%20an%20a%20later%20section
https://www.w3.org/Addressing/URL/url-spec.html#:~:text=URL%20syntax,in%20an%20a%20later%20section
https://www.w3.org/Addressing/URL/5_BNF.html


JSON

• https://www.json.org/json-en.html

• Lightweight, human readable data-interchange format

• JSON vs XML: https://json.org/example.html

• Downsides: 
• No error handling 
• Less expressive and flexible than XML
• No comments, namespaces, attributes (hard to add metadata)
• No versioning
• No security 
• No XSD

• But… Everybody knows it, everybody uses it…

https://www.json.org/json-en.html
https://www.json.org/json-en.html
https://www.json.org/json-en.html
https://www.json.org/json-en.html
https://json.org/example.html


Introduction to microservices

• https://microservices.io/ 

• Independent releasable / deployable services

• Should model a business domain - "DDD"

• All functionality and data is encapsulated
• Each service has its own data / function
• "Information hiding"

• All functionality and data is made available to others via networks (as 
API)
• The word API is very confusing sometimes…

• Loose coupling / High Cohesion 

https://microservices.io/
https://microservices.io/


The structure of a microservice (Spring)

6) Response

3) Find working 
thread

2) Create handler 
(controller) instance

4) Run instance in 
thread

5) Pass results back

1) Request



Microservices structure
• Spring Boot uses Tomcat

• Some limitations (https://oskar-uit-de-bos.medium.com/the-performance-
challenge-in-java-microservices-e51cce3977e9) 

• Blocking threads and consuming resources

https://oskar-uit-de-bos.medium.com/the-performance-challenge-in-java-microservices-e51cce3977e9
https://oskar-uit-de-bos.medium.com/the-performance-challenge-in-java-microservices-e51cce3977e9
https://oskar-uit-de-bos.medium.com/the-performance-challenge-in-java-microservices-e51cce3977e9
https://oskar-uit-de-bos.medium.com/the-performance-challenge-in-java-microservices-e51cce3977e9
https://oskar-uit-de-bos.medium.com/the-performance-challenge-in-java-microservices-e51cce3977e9
https://oskar-uit-de-bos.medium.com/the-performance-challenge-in-java-microservices-e51cce3977e9
https://oskar-uit-de-bos.medium.com/the-performance-challenge-in-java-microservices-e51cce3977e9
https://oskar-uit-de-bos.medium.com/the-performance-challenge-in-java-microservices-e51cce3977e9
https://oskar-uit-de-bos.medium.com/the-performance-challenge-in-java-microservices-e51cce3977e9
https://oskar-uit-de-bos.medium.com/the-performance-challenge-in-java-microservices-e51cce3977e9
https://oskar-uit-de-bos.medium.com/the-performance-challenge-in-java-microservices-e51cce3977e9
https://oskar-uit-de-bos.medium.com/the-performance-challenge-in-java-microservices-e51cce3977e9
https://oskar-uit-de-bos.medium.com/the-performance-challenge-in-java-microservices-e51cce3977e9
https://oskar-uit-de-bos.medium.com/the-performance-challenge-in-java-microservices-e51cce3977e9
https://oskar-uit-de-bos.medium.com/the-performance-challenge-in-java-microservices-e51cce3977e9
https://oskar-uit-de-bos.medium.com/the-performance-challenge-in-java-microservices-e51cce3977e9
https://oskar-uit-de-bos.medium.com/the-performance-challenge-in-java-microservices-e51cce3977e9
https://oskar-uit-de-bos.medium.com/the-performance-challenge-in-java-microservices-e51cce3977e9
https://oskar-uit-de-bos.medium.com/the-performance-challenge-in-java-microservices-e51cce3977e9


Example microservice in Java

• Main entry point:
https://github.com/mglienecke/IlpTutorialRestService

https://github.com/mglienecke/IlpTutorialRestService/blob/main/src/main/java/uk/ac/ed/inf/ilptutorialrestservice/IlpTutorialRestServiceApplication.java


Tools to test microservices

• REST
• Postman
• curl
• Swagger
• IntelliJ (built in)

• gRPC
• gRPCurl
• Postman

• Kafka / RabbitMQ
• Command line (shell) tools & UI



Communication styles in general

• Synchronous

• Asynchronous



Asynchronous

• One-to-one
• Async request / response

• One way notifications

• One-to-many
• Publish / subscribe

• Publish / async responses

• Issue Request - Response will arrive at some time
• or never -> error handling is crucial

• Sometimes "fire and forget" is intended (status updates) -> like UDP

• Usually handled with promises (e.g. JavaScript and AJAX) in client-
programming



Asynchronous

• True async response handling is tricky 
• Where does the server send the response to?

• Web-Callback

• Polling (yes, an ugly word, but sometimes useful and cheap – like a Spin-Lock 
Semaphore)

• Signal-R (Chat, Async notifications, mostly done using UDP) 

• Often the client starts a "sync" background thread to wait for the 
answer to simulate async behaviour 

• Messaging is async by design (Kafka, MQ, AQMP, …)
• And reliable



Synchronous

• Request -> Response with wait
• Causes blocking of the requester until response arrives or timeout

• Can be achieved with "promises" in asynchronous manner as well
• https://developer.mozilla.org/en-

US/docs/Web/JavaScript/Reference/Global_Objects/Promise 

• Sometimes the easiest and most useful to do
• e.g. logon -> you really want to wait until you get the response

• In general, avoid if you can 
• Load issues, scaling, resource blocking 

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise


How does this map to the Azure Blob API?

• https://learn.microsoft.com/en-us/rest/api/storageservices/blob-
service-rest-api 

• Azure Blob is a collection of endpoints in REST

• There presumably are several "controllers" which instantiate handlers 
for requests

• These perform the actual request and return the results

https://learn.microsoft.com/en-us/rest/api/storageservices/blob-service-rest-api
https://learn.microsoft.com/en-us/rest/api/storageservices/blob-service-rest-api
https://learn.microsoft.com/en-us/rest/api/storageservices/blob-service-rest-api
https://learn.microsoft.com/en-us/rest/api/storageservices/blob-service-rest-api
https://learn.microsoft.com/en-us/rest/api/storageservices/blob-service-rest-api
https://learn.microsoft.com/en-us/rest/api/storageservices/blob-service-rest-api
https://learn.microsoft.com/en-us/rest/api/storageservices/blob-service-rest-api
https://learn.microsoft.com/en-us/rest/api/storageservices/blob-service-rest-api
https://learn.microsoft.com/en-us/rest/api/storageservices/blob-service-rest-api
https://learn.microsoft.com/en-us/rest/api/storageservices/blob-service-rest-api

	Slide 1: ACP / 2
	Slide 2: Welcome again
	Slide 3: Architectural styles (not all…)
	Slide 4: Architectural styles /2
	Slide 5: Monolith vs Service oriented
	Slide 6: Point to point - mesh
	Slide 7: Flow Architecture
	Slide 8: Event based architectures /2
	Slide 9: Containerization - how
	Slide 10: docker
	Slide 11: A microservice in docker
	Slide 12: Running a microservice in docker
	Slide 13: Kubernetes
	Slide 14: Communication protocols
	Slide 15: General
	Slide 16: JSON
	Slide 17: Introduction to microservices
	Slide 18: The structure of a microservice (Spring)
	Slide 19: Microservices structure
	Slide 20: Example microservice in Java
	Slide 21: Tools to test microservices
	Slide 22: Communication styles in general
	Slide 23: Asynchronous
	Slide 24: Asynchronous
	Slide 25: Synchronous
	Slide 26: How does this map to the Azure Blob API?

