ACP /2

Michael Glienecke, PhD

Welcome again

e Architectural styles

« Communication protocols / patterns / methods
* A bit about containerization

* Introduction to microservices

* JSON

* REST in more detail

* REST techniques

Wi '5441
Q g THE UNIVERSITY of EDINBURGH

. informatics

Architectural styles (not all...)

* Monolith
* Single process
* Modular
e Distributed

 Service oriented architectures (SOA)
 Services collaborate to achieve some capabilities
* Often shared databases
* Larger logical blocks ("services"

* Scaling often only on the service-level
* not the service as such on several nodes / services often cannot be spread out

NIVERSITY of EDINBURGH

& g w7 & THEU

7 e P

Aey)- informatic
Oine

Architectural styles /2

* Microservices
e Simple
e Meshes

* Flow / Event-driven

ooooo
HHHHHHHHHHHHHHHHHHHHHHHH

Monolith vs Service oriented

Architecture Comparison

Monolithic Architecture Service-Oriented Architecture

API Gateway

UI Layer

Order Payment Inventory

Business Logic
Service Service Service

Data Access

] : Analytics Auth

Service Service
Database

Monolith SOA / Microservices

THE UNIVERSITY of EDINBURGH

informatics

Point to point - mesh

The APl Gateway routes Services corresponding
requests from the mobile to business capabilities/
applications to services. domain-driven design
\ (DDD) subdomains
_ o
[2] X
\ Stripe
REST v REST 4 N Adapter
AP API
g AP RESTY Accounting
Courier < API Service
® Gateway Restaurant
REST | Service,
Twilio
REST [\ Adapt
Consumer] Adapter
°® Notification ‘>
Restaurant \ Semvice P
Web Ul SES
o= Adapter
Restaurant
ResT(
AP
/' Delivery
[Service

|
/ N
Services have APIs. - A service’s data is private.

THE UNIVERSITY of EDINBURGH

informatics https://livebook.manning.com/book/microservices-patterns/chapter-1/106

Flow Architecture

Queue 1 subscribe

Order Service
publish

Primary DB

Event Bus subscribe

Mobile App publish Inventory Service

IoT Devices publish

subscribe Analytics Service Event Store

External APIs publish Queue 2

subscribe Notification Service

THE UNIVERSITY of EDINBURGH

informatics

Event based architectures /2

Microservice |

REST

Microservice 2 AP

https://eu01.alma.exlibrisgroup.com/leganto/public/44UOE_INST/citation/45644351890002466?auth=SAML

%
\~. THE UNIVERSITY of EDINBURGH

&Y informatics

Containerization - how

* OCl based

* https://opencontainers.org/about/overview/
* https://opencontainers.org/community/overview/

* Images form the runnable applications

* Are loaded on demand

* Executed when needed

* All networking is mapped

* File system access is mapped to volumes

UNIVERSITY of EDINBURGH

@“N 'E*J

cAmra- THE

T T e .

Aey)- informatic
OFN®

https://opencontainers.org/about/overview/
https://opencontainers.org/about/overview/
https://opencontainers.org/community/overview/
https://opencontainers.org/community/overview/

docker

Client | DOCKER_HOST)
docker build AL P Docker daemon
) \. -._”.' - Z
/ \ =
docker pull -| | \ a
j : Images |——
: \ :
docker run —7 \.\
: /
\‘\“/. //
7

=

\. THE UNIVERSITY o

): informatics https://www.cherryservers.com/blog/a-complete-overview-of-docker-architecture

A microservice in docker

Runtime

P
<«

000S

Service —r—
map

I https://myServer:5000/resource

/var/mySpace

map

Local disk

%
\~. THE UNIVERSITY of EDINBURGH

&Y informatics

Running a microservice in docker

* One service / image

 Sidecar as an option

ooooo
HHHHHHHHHHHHHHHHHHHHHHHH

Kubernetes Architecture

Kubernetes
Kubernetes Cluster

Clold, tics s "o o e
Provider ' Data Plane (Worker Nodes) @ :
Control Plane (Master Node) APl Worker Node 1 .

2] .0 000
J : kubelet

Container Runtime

eted Cloud Controller :
(key-value store) Manager* : v

~ | eoee o .

‘ @ K8s Objects* @ il mxy
i kubectl

e (L CLAED > API Server 1
cLy ot 5

API/ Worker Node 2
Dash- :

o 1 1 000

. . kubelet Container Runtime

Scheduler Controlle Manager @ @ @ @ - Jy

: @ K8s Objects* @ kubroxy
il <> SIMFORM
e THE LIN[VERSITYngDlNBURGH . . _ .
" informatics https://www.simform.com/blog/kubernetes-architecture/

Communication protocols

* Request - Response
* gRPC
* http native
 SOAP
* REST
* GraphQL

* Messaging
e Kafka
« MQTT
e Pulsar
« AMQP (RabbitMQ, ...)

\\uw}_—*]
Q . THE UNIVERSITY of EDINBURG

. informatics

General

e REST <> http
* REST is

e Uniform

e Stateless

* Client-Server
e Cacheable

* URL

* Syntax: https://www.w3.org/Addressing /URL/url-
spec.html#:~:text=URL%20syntax,in%20an%20a%20later%20section.

* BNF: https://www.w3.org/Addressing/URL/5 BNF.html

UNIVERSITY of EDINBURGH

@“NIVE’?J

i) id B :

- informatic
OIrne

https://www.w3.org/Addressing/URL/url-spec.html#:~:text=URL%20syntax,in%20an%20a%20later%20section
https://www.w3.org/Addressing/URL/url-spec.html#:~:text=URL%20syntax,in%20an%20a%20later%20section
https://www.w3.org/Addressing/URL/url-spec.html#:~:text=URL%20syntax,in%20an%20a%20later%20section
https://www.w3.org/Addressing/URL/5_BNF.html

JSON

e https://www.json.org/json-en.html
* Lightweight, human readable data-interchange format
e JSON vs XML: https://ison.org/example.html

* Downsides:
* No error handling
* Less expressive and flexible than XML
 No comments, namespaces, attributes (hard to add metadata)
* No versioning
No security
No XSD

e But... Everybody knows it, everybody uses it...

UNIVERSITY of EDINBURGH

_S"\\‘) V*J’,\ THE

7 - .

- informatic
OrnNe

https://www.json.org/json-en.html
https://www.json.org/json-en.html
https://www.json.org/json-en.html
https://www.json.org/json-en.html
https://json.org/example.html

Introduction to microservices

 https://microservices.io/
* Independent releasable / deployable services
e Should model a business domain - "DDD"

 All functionality and data is encapsulated

* Each service has its own data / function
* "Information hiding"

 All functionality and data is made available to others via networks (as
API)

* The word APl is very confusing sometimes...
* Loose coupling / High Cohesion

EEEEEEEEEEEEEEEEEEEEEEEEEE

https://microservices.io/
https://microservices.io/

The structure of a microservice (Spring)

6) Response

5) Pass results back

1) Request

4) Run instance in -
thread

2) Create handler
(controller) instance

3) Find working
thread

4
\~. THE UNIVERSITY of EDINBURGH

A& informatics

Microservices structure

* Spring Boot uses Tomcat
e Some limitations (https://oskar-uit-de-bos.medium.com/the-performance-

challenge-in-java-microservices-e51cce3977e9)

* Blocking threads and consuming resources

Microservice

Database

Network

Request |

Y

fienp

\—Thread walting

AL
Aouse

Response |-

GRLVE,
\-. THE UNIVERSITY of EDINBURGH

& informatics

https://oskar-uit-de-bos.medium.com/the-performance-challenge-in-java-microservices-e51cce3977e9
https://oskar-uit-de-bos.medium.com/the-performance-challenge-in-java-microservices-e51cce3977e9
https://oskar-uit-de-bos.medium.com/the-performance-challenge-in-java-microservices-e51cce3977e9
https://oskar-uit-de-bos.medium.com/the-performance-challenge-in-java-microservices-e51cce3977e9
https://oskar-uit-de-bos.medium.com/the-performance-challenge-in-java-microservices-e51cce3977e9
https://oskar-uit-de-bos.medium.com/the-performance-challenge-in-java-microservices-e51cce3977e9
https://oskar-uit-de-bos.medium.com/the-performance-challenge-in-java-microservices-e51cce3977e9
https://oskar-uit-de-bos.medium.com/the-performance-challenge-in-java-microservices-e51cce3977e9
https://oskar-uit-de-bos.medium.com/the-performance-challenge-in-java-microservices-e51cce3977e9
https://oskar-uit-de-bos.medium.com/the-performance-challenge-in-java-microservices-e51cce3977e9
https://oskar-uit-de-bos.medium.com/the-performance-challenge-in-java-microservices-e51cce3977e9
https://oskar-uit-de-bos.medium.com/the-performance-challenge-in-java-microservices-e51cce3977e9
https://oskar-uit-de-bos.medium.com/the-performance-challenge-in-java-microservices-e51cce3977e9
https://oskar-uit-de-bos.medium.com/the-performance-challenge-in-java-microservices-e51cce3977e9
https://oskar-uit-de-bos.medium.com/the-performance-challenge-in-java-microservices-e51cce3977e9
https://oskar-uit-de-bos.medium.com/the-performance-challenge-in-java-microservices-e51cce3977e9
https://oskar-uit-de-bos.medium.com/the-performance-challenge-in-java-microservices-e51cce3977e9
https://oskar-uit-de-bos.medium.com/the-performance-challenge-in-java-microservices-e51cce3977e9
https://oskar-uit-de-bos.medium.com/the-performance-challenge-in-java-microservices-e51cce3977e9

Example microservice in Java

* Main entry point:
https://github.com/mglienecke/llpTutorialRestService

_gﬁg THE UNIVERSITY of EDINBURGH

©3 inf ti

v informatics
OFN®

https://github.com/mglienecke/IlpTutorialRestService/blob/main/src/main/java/uk/ac/ed/inf/ilptutorialrestservice/IlpTutorialRestServiceApplication.java

Tools to test microservices

* REST

* Postman

curl

Swagger
IntelliJ (built in)

* gRPC
e gRPCurl
* Postman

e Kafka / RabbitMQ

e Command line (shell) tools & Ul

EEEEEEEEEEEEEEEEEEEEEEEEEE

Communication styles in general

* Synchronous
* Asynchronous

ooooo
HHHHHHHHHHHHHHHHHHHHHHHH

Asynchronous

* One-to-one
* Async request / response
* One way notifications

* One-to-many
e Publish / subscribe
e Publish / async responses

* |ssue Request - Response will arrive at some time
e or never -> error handling is crucial
* Sometimes "fire and forget" is intended (status updates) -> like UDP

e Usually handled with promises (e.g. JavaScript and AJAX) in client-
programming

Ry \\ X7 & THE UNIVERSITY of EDINBURGH

7 e .

Aey)- informatics
Oine

Asynchronous

* True async response handling is tricky

 Where does the server send the response to?
* Web-Callback

* Polling (yes, an ugly word, but sometimes useful and cheap — like a Spin-Lock
Semaphore)

 Signal-R (Chat, Async notifications, mostly done using UDP)

e Often the client starts a "sync" background thread to wait for the
answer to simulate async behaviour
* Messaging is async by design (Kafka, MQ, AQMP, ...)
* And reliable

Ry \\ X7 & THE UNIVERSITY of EDINBURGH

7 e .

Aey)- informatics
Oine

Synchronous

* Request -> Response with wait
* Causes blocking of the requester until response arrives or timeout

* Can be achieved with "promises" in asynchronous manner as well

* https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global Objects/Promise

 Sometimes the easiest and most useful to do
e e.g. logon -> you really want to wait until you get the response

* In general, avoid if you can
* Load issues, scaling, resource blocking

UNIVERSITY of EDINBURGH

S‘\\) :*J’,\ THE

7 - .

- informatic
OrnNe

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise

How does this map to the Azure Blob API?

* https://learn.microsoft.com/en-us/rest/api/storageservices/blob-
service-rest-api

* Azure Blob is a collection of endpoints in REST

* There presumably are several "controllers” which instantiate handlers
for requests

* These perform the actual request and return the results

ooooo
HHHHHHHHHHHHHHHHHHHHHHHH

https://learn.microsoft.com/en-us/rest/api/storageservices/blob-service-rest-api
https://learn.microsoft.com/en-us/rest/api/storageservices/blob-service-rest-api
https://learn.microsoft.com/en-us/rest/api/storageservices/blob-service-rest-api
https://learn.microsoft.com/en-us/rest/api/storageservices/blob-service-rest-api
https://learn.microsoft.com/en-us/rest/api/storageservices/blob-service-rest-api
https://learn.microsoft.com/en-us/rest/api/storageservices/blob-service-rest-api
https://learn.microsoft.com/en-us/rest/api/storageservices/blob-service-rest-api
https://learn.microsoft.com/en-us/rest/api/storageservices/blob-service-rest-api
https://learn.microsoft.com/en-us/rest/api/storageservices/blob-service-rest-api
https://learn.microsoft.com/en-us/rest/api/storageservices/blob-service-rest-api

	Slide 1: ACP / 2
	Slide 2: Welcome again
	Slide 3: Architectural styles (not all…)
	Slide 4: Architectural styles /2
	Slide 5: Monolith vs Service oriented
	Slide 6: Point to point - mesh
	Slide 7: Flow Architecture
	Slide 8: Event based architectures /2
	Slide 9: Containerization - how
	Slide 10: docker
	Slide 11: A microservice in docker
	Slide 12: Running a microservice in docker
	Slide 13: Kubernetes
	Slide 14: Communication protocols
	Slide 15: General
	Slide 16: JSON
	Slide 17: Introduction to microservices
	Slide 18: The structure of a microservice (Spring)
	Slide 19: Microservices structure
	Slide 20: Example microservice in Java
	Slide 21: Tools to test microservices
	Slide 22: Communication styles in general
	Slide 23: Asynchronous
	Slide 24: Asynchronous
	Slide 25: Synchronous
	Slide 26: How does this map to the Azure Blob API?

