
Compiling Techniques
Lecture 3: Lexical Analysis

The Lexer

● Maps character stream into words — the basic unit of syntax
● Assign a syntactic category to each word (part of speech)

○ x = x + y; becomes ID(x) EQ ID(x) PLUS ID(y) SC
○ word ∼= lexeme
○ syntactic category ∼= part of speech
○ In casual speech, we call the pair a token

● Typical tokens: number, identifier, +, −, new, while, if, . . .
● Scanner eliminates white space (including comments)

2

ScannerSource IR

Errors

Tokenizer

char

Parser Semantic
Analyzer

token

IR
Generator

AST AST
Lexer

Context-free Language

Context-free syntax is specified with a grammar

● SheepNoise → SheepNoise baa | baa
● This grammar defines the set of noises that a sheep makes under normal

circumstances

It is written in a variant of Backus Naur Form (BNF)

Formally, a grammar G = (S,N,T,P)

● S is the start symbol
● N is a set of non-terminal symbols
● T is a set of terminal symbols or words
● P is a set of productions or rewrite rules (P:N → N ∪ T)

3

Simple Expression Grammar

goal → expr

expr → expr op term | term

term → number | id

op → + | -

4

● This grammar defines simple expressions with addition & subtraction over “number” and “id”
● This grammar, like many, falls in a class called “context-free grammars”, abbreviated CFG

S = goal

T = { number, id , +, − }
N = { goal , expr , term , op }

P = { 1, 2, 3, 4, 5, 6, 7 }

Parse Tree

x + 2 - y

5

goal

expr

opexpr term

expr op term

term

id (x)

+ num(2)

- id(y)

Regular Expression

Grammars can often be simplified and shortened using an augmented BNF
notation where:

● x∗ is the Kleene closure : zero or more occurrences of x
● x+ is the positive closure : one or more occurrences of x
● [x] is an option: zero or one occurrence of x

6

Example: identifier syntax

identifier ::= letter (letter | digit)*
digit ::= “0” | … | “9”
letter ::= “a” | … | “z” | “A” | … | “Z”

Exercise: Signed Numbers

Task: Write the grammar of signed integers

Use pen and paper to write down such a grammar!

7

Regular Language

● Regular languages can be used to specify the words to be translated to
tokens by the lexer.

● Regular languages can be recognised with finite state machine.
● Using results from automata theory and theory of algorithms, we can

automatically build recognisers from regular expressions (next lecture).

8

Definition

A language is regular if it can be expressed with a single regular expression or with multiple
non-recursive regular expressions.

Regular Language to Program

Given the following:

● c is a lookahead character;
● next() consumes the next character;
● error () quits with an error message; and
● first (exp) is the set of initial characters of exp.

9

Regular Language to Program

10

RE pr(RE)

“x” if c == ‘x’:
 next()
else:
 error()

(exp) pr(exp)

[exp] if c in first(exp):
 pr(exp)

exp* while c in first(exp):
 pr(exp)

Regular Language to Program

11

RE pr(RE)

exp+ pr(exp)
while c in first(exp):
 pr(exp)

fact_1 … fact_n pr(fact_1); … ; pr(fact_n)

term_1 | … | term_n if c in first(term_1):
 pr(term_1)
elif …
 …
elif c in first(term_n):
 pr(term_n)
else
 error()

Only works if the grammar is “left parsable”.

Definition: Left Parsable

12

A grammar is left-parsable if:

term_1 | … | term_n The terms do not share any initial symbols.

fact_1 … fact_n If fact_i contains the empty symbol then fact_i and
 fact_i + 1 do not share any common initial symbols.

[exp], exp∗ The initial symbols of exp cannot contain a symbol
 which belong to the first set of an expression
 following exp.

Example: Recognising identifiers
void ident () {
 if (c is in [a−zA−Z])
 letter();
 else
 error();

 while (c is in [a−zA−Z0−9]) {
 switch (c) {
 case c is in [a−zA−Z] : letter();

 case c is in [0 −9] : digit();

 default : error();
 }
 }
}

void letter() { … }

void digit() { … }

13

Example: Simplified Python Version

void ident () {

 if (Character.isLetter(c))

 next();

 else

 error();

 while (Character.isLetterOrDigit(c))

 next();

}

14

Role of Lexical Analyser

The main role of the lexical analyser (or lexer) is to read a bit of the input and
return a lexeme (or token).

def Lexer:
 def nextToken(self) {
 // return the next token, ignoring whitespaces
 }
 …

}

White spaces are usually ignored by the lexer. White spaces are:

● white characters (tabulation, newline, . . .)
● comments (any character following “//” or enclosed between “/*” and “*/”

15

What is a token?

 A token consists of a token class and other additional information.

16

Example: some token classes

IDENTIFIER → foo , main , cnt , …
NUMBER → 0 , −12, 1000 , …
STRING_LITERAL → ”Hello world!”, ”a”, …
EQ → ==
ASSIGN → =
PLUS → +
LPAR → (
… → …

class Token:
 Kind: TokenKind
 Value: Any = None

Example

Given the following Python program:

def foo (i):
 return i+2

the lexer will return:

DEF IDENTIFIER(”foo”) LPAR IDENTIFIER (”i”) RPAR COLON
 RETURN IDENTIFIER(”i”) PLUS NUMBER(”2”)

17

A Lexer for Simple Arithmetic Expressions

18

Example: BNF syntax

identifier ::= letter (letter | digit)∗
digit ::= ”0” | . . . | ”9”
letter ::= ”a ” | . . . | ” z ” | ”A” | . . . | ”Z”
number ::= digit+
plus ::= ”+”
minus ::= ”−”

Example: token definition

from enum import Enum
from dataclasses import dataclass

class TokenClass(Enum):
 IDENTIFIER = 0
 NUMBER = 1
 PLUS = 2
 MINUS = 3

@dataclass
class Token:
 type: TokenClass
 value: any = None

 def __repr__(self):
 return self.type.name + ((":" + str(self.value)) if self.value else "")

19

Example: scanner implementation

class Scanner:

 def __init__(self, stream):

 self.stream = stream

 self.buffer = None

 def peek(self):

 if not self.buffer:

 self.buffer = self.next()

 return self.buffer

20

def next(self):

 if self.buffer:

 c = self.buffer

 self.buffer = None

 return c

 return self.stream.read(1)

Example: Tokenizer implementation

class Tokenizer:

 def __init__(self, scanner):

 self.scanner = scanner

 self.buffer = None

 def peek(self):

 if not self.buffer:

 self.buffer = self.next()

 return self.buffer

21

def next(self):
 if self.buffer:
 c = self.buffer
 self.buffer = None
 return c
 c = self.scanner.next()

 if c.isspace():
 return self.next()

 if c == "+":
 return Token(TokenClass.PLUS)

 if c == "-":
 return Token(TokenClass.MINUS)

Example: Tokenizer implementation (continued)

if c.isalpha():

 name = c

 c = self.scanner.peek()

 while c.isalpha() or c.isdigit():

 name += c

 self.scanner.next()

 c = self.scanner.peek()

 return Token(TokenClass.IDENTIFIER, name)

22

Example: Tokenizer implementation (continued)

if c.isdigit():

 digits = c

 c = self.scanner.peek()

 while c.isdigit():

 digits += c

 self.scanner.next()

 c = self.scanner.peek()

 value = int(digits)

 return Token(TokenClass.NUMBER, value)

23

Next Lecture

● Automatic Lexer Generation

24

