Compiling Techniques

Lecture 3: Lexical Analysis

The Lexer

Lexer
:I Char ‘tOken AST
Source Scanner Tokenizer Parser Semantic 15 IR
Analyzer Generator

» Errors

e Maps character stream into words — the basic unit of syntax
e Assign a syntactic category to each word (part of speech)

o Xx=Xx+Yy; becomes ID(x) EQ ID(x) PLUS ID(y) SC

o word ~= lexeme

o syntactic category ~= part of speech

o In casual speech, we call the pair a token
e Typical tokens: number, identifier, +, —, new, while, if, . . .

e Scanner eliminates white space (including comments)

Context-free Language

Context-free syntax is specified with a grammar

e SheepNoise — SheepNoise baa | baa
e This grammar defines the set of noises that a sheep makes under normal
circumstances

It is written in a variant of Backus Naur Form (BNF)
Formally, a grammar G = (S,N,T,P)

S is the start symbol
N is a set of non-terminal symbols
T is a set of terminal symbols or words

[
o
[
e P is a set of productions or rewrite rules (P:N — N U T)

Simple Expression Grammar

goal — expr S = goal

expr — expr op term | term T = { number, id , +, - }

term — number | id N = { goal , expr , term , op }
op — + | - P={1, 2, 3, 4, 5, 6, 7}

e This grammar defines simple expressions with addition & subtraction over “humber” and “id”
e This grammar, like many, falls in a class called “context-free grammars”, abbreviated CFG

Parse Tree

term

id(y)

term + num(2)

id (x)

Regular Expression

Grammars can often be simplified and shortened using an augmented BNF

notation where;

e Xx*is the Kleene closure : zero or more occurrences of x
e X+ is the positive closure : one or more occurrences of x
e [x]is an option: zero or one occurrence of x

~

Example: identifier syntax

identifier ::= letter (letter | digit)*
digit ::= “@” | ... | “9”
letter ::= “a@” | ... | “z” | “A” | ... | “Z”

\

Exercise: Signed Numbers

Task: Write the grammar of signed integers

Use pen and paper to write down such a grammar!

Regular Language
4 N

Definition

A language is regular if it can be expressed with a single regular expression or with multiple
non-recursive regular expressions.

\)

e Regular languages can be used to specify the words to be translated to
tokens by the lexer.

e Regular languages can be recognised with finite state machine.

e Using results from automata theory and theory of algorithms, we can
automatically build recognisers from regular expressions (next lecture).

Regular Language to Program

Given the following:

c is a lookahead character;
next() consumes the next character;
error () quits with an error message; and

o
[
o
e first (exp) is the set of initial characters of exp.

Regular Language to Program

RE

({222

X

(exp)

[exp]

exp*

pr(RE)

if ¢ == x’:
next()

else:
error()

pr(exp)

if c in first(exp):
pr(exp)

while c in first(exp):

pr(exp)

10

Regular Language to Program

RE pr(RE)
exp+ pr(exp)
while c¢ in first(exp):
pr(exp)
fact_1 ... fact_n pr(fact_1); ... ; pr(fact_n)
term_ 1 | ... | term_n if c in first(term 1):
pr(term_1)
elif ...

elif c in first(term_n):
pr(term_n)

else
error()

Only works if the grammar is “left parsable”.

11

Definition: Left Parsable

ﬁgrammar is left-parsable if:

term 1 | ... | term_n

fact 1 ... fact n

[exp], exp*

S

The terms do not share any initial symbols.

If fact_i contains the empty symbol then fact i and
fact_i + 1 do not share any common initial symbols.

The initial symbols of exp cannot contain a symbol
which belong to the first set of an expression
following exp.

12

Example: Recognising identifiers

void ident () {
if (c is in [a-zA-Z2])
letter();
else
error();

while (c is in [a-zA-Z0-9]) {
switch (c) {
case ¢ is in [a-zA-Z] : letter();

case c is in [@ -9] : digit();

default : error();

}
}
}

void letter() { ... }

void digit() { ... }

13

Example: Simplified Python Version

void ident () {
if (Character.islLetter(c))
next();
else
error();
while (Character.islLetterOrDigit(c))
next();

14

Role of Lexical Analyser

The main role of the lexical analyser (or lexer) is to read a bit of the input and
return a lexeme (or token).

def Lexer:
def nextToken(self) {
// return the next token, ignoring whitespaces

}

}

White spaces are usually ignored by the lexer. White spaces are:

e white characters (tabulation, newline, . . .)
e comments (any character following “//” or enclosed between “/*” and “*/”

15

What is a token?

A token consists of a token class and other additional information.

ﬂxample: some token classes

IDENTIFIER
NUMBER
STRING_LITERAL
EQ

ASSIGN

PLUS

LPAR

\<:

Vil

foo, main, cnt, ...
0,-12,1000, ...

"Hello world!”, "a”, ...

~

class Token:
Kind: TokenKind
Value: Any = None

16

Example

Given the following Python program:

def foo (i):
return i+2

the lexer will return:

DEF IDENTIFIER(”fo0”) LPAR IDENTIFIER (’i”) RPAR COLON
RETURN IDENTIFIER(”i”) PLUS NUMBER(*2”)

17

A Lexer for Simple Arithmetic Expressions

(e

xample: BNF syntax

identifier ::= letter (letter | digit)*

dlglt =T e | .. | »g»

1etter s = »a » | ... | £3) v 3 | »A» | ... | »Z»
number 1= digit+

plUS ce= Mg

minus L=

(&

Example: token definition

from enum import Enum
from dataclasses import dataclass

class TokenClass(Enum):

IDENTIFIER = ©
NUMBER =1
PLUS = 2
MINUS = 3
@dataclass

class Token:
type: TokenClass
value: any = None

def _ repr_ (self):
return self.type.name + ((

+ str(self.value)) if self.value else "")

19

Example: scanner implementation

class Scanner:
def init (self, stream):
self.stream = stream
self.buffer = None

def peek(self): def next(self):
if not self.buffer: if self.buffer:
self.buffer = self.next() c = self.buffer
return self.buffer self.buffer = None
return c

return self.stream.read(1)

20

Example: Tokenizer implementation

class Tokenizer:
def init (self, scanner):
self.scanner = scanner
self.buffer = None

def peek(self):
if not self.buffer:
self.buffer = self.next()
return self.buffer

def next(self):
if self.buffer:
c = self.buffer
self.buffer = None
return c
c = self.scanner.next()

if c.isspace():
return self.next()

if ¢ == "+":

return Token(TokenClass.PLUS)
if ¢ == "-":
return Token(TokenClass.MINUS)

21

Example: Tokenizer implementation (continued)

if c.isalpha():
name = ¢
c = self.scanner.peek()
while c.isalpha() or c.isdigit():
name += c
self.scanner.next()
c = self.scanner.peek()

return Token(TokenClass.IDENTIFIER, name)

Example: Tokenizer implementation (continued)

if c.isdigit():
digits = ¢
c = self.scanner.peek()
while c.isdigit():
digits += ¢
self.scanner.next()
c = self.scanner.peek()
value = int(digits)
return Token(TokenClass.NUMBER, value)

23

Next Lecture

e Automatic Lexer Generation

24

