Compiling Techniques

Lecture 4: Automatic Lexer Generation

Automatic Lexer Generation

Lexer
Cha r tOken
Source Scanner Tokenizer Parser Semantic IR
Analyzer Generator

» Errors

e Starting from a collection of regular expressions (RE) we automatically
generate a Lexer
e \We use finite state automata (FSA) for the construction

A Finite State Automata

A finite state automata is defined by:

e S, afinite set of states

e 2, an alphabet, or character set used by the recogniser

e O(s, c), a transition function (takes a state and a character and returns new
state)

e s0, the initial or start state

e SF, a set of final states (a stream of characters is accepted iif the automata
ends up in a final state)

Finite State Automata for Regular Expression

Example: register names

register ::= ‘r’ (‘©’°|°1°|...]°9°) (‘@ |°1°|...[?9°)*

The RE (Regular Expression) corresponds to a recognizer (or a finite state automata):

r 0| 1)...['9

0| 1]...]'9

Table encoding and skeleton code

To be useful a recognizer must be turned into code

sO

s1

s2

s1

error

error

4
0| “1)...['9
O11)...I'9]
error
s2

s2

0’ [1.9

others

error
error

error

Skeleton recogniser
¢ = next_character()

state = “s0”
while ¢ := EOF:
state = &(s, ¢)
¢ = next_character()

if (state final):
return success
else:
return error

N

/

Non-Determinism

Deterministics Finite Automaton

Each RE corresponds to a Deterministic Finite Automaton (DFA). However, it might
be hard to construct directly.

O USROS

£ ‘b’

‘a’ I lbl

s0 has a transition on €, which can be followed without

consuming an input character.
What about an RE such as (a|b)* abb ? e s1 has two transitions on a

e This is a non-deterministic finite automaton (NFA)

Non-deterministic vs deterministic finite automata

Deterministic finite state automata (DFA):

e All edges leaving the same node have distinct labels
e There is no € transition

Non-deterministic finite state automata (NFA):

e Can have multiple edges with the same label leaving from the same node
e Can have ¢ transition

This means we might have to backtrack

Automatic Lexer Generation

It is possible to systematically generate a lexer for any regular expression.

This can be done in three steps:

1. regular expression (RE) — non-deterministic finite automata (NFA)
2. NFA — deterministic finite automata (DFA)
3. DFA — generated lexer

1st step: RE — NFA (Ken Thompson, CACM, 1968)

iXJ

‘X’ M| N
o :
€ s1 > s2
] : @

s0 s1 N

1st step: RE — NFA (Ken Thompson, CACM, 1968)

M N
M € N
M+
O e OSO

10

Step 2: NFA — DFA

Executing a non-deterministic finite automata requires backtracking, which is
inefficient. To overcome this, we need to construct a DFA from the NFA.

The main idea:

e We build a DFA which has one state for each set of states the NFA could end
up in.

e A set of state is final in the DFA if it contains the final state from the NFA.

e Since the number of states in the NFA is finite (n), the number of possible sets
of states is also finite (maximum 2*n , hint: state encoded as binary vectors).

1

From NFA to DFA

Assuming the state of the NFA are labelled si and the states of the DFA we are
building are labelled qi.

We have two key functions:

e reachable(si, a) returns the set of states reachable from si by consuming

character a
e c¢-closure(si) returns the set of states reachable from si by € (e.g. without

consuming a character)

12

Algorithm

The Subset Construction algorithm (Fixed point iteration)

qo = e-closure(sp); Q ={qo}; add go to WorkList
while (WorkList not empty)
remove g from WorkList
for each ae X
subset = e-closure(reachable(q, «))
d(q,) = subset
if (subset ¢ Q) then
add subset to @ and to WorkList

The algorithm (in English)
@ Start from start state sy of the NFA, compute its e-closure
@ Build subset from all states reachable from gg for character «
Add this subset to the transition table/function ¢

°
@ If the subset has not been seen before, add it to the worklist
(*}

I[terate until no new subset are created

13

NFA for a(b|c)*

a(blc)*

e-closure(reachable(q, «))

NFA states | a b c
% | % o none none
a1 | s1,%,s3, none q2 a3

54,56, 59
g2 | ss, sg, 5o, none q2 a3

53, 54, S6
g3 | s7, ss, 5o, none q2 a3

53, 54, 56

14

DFA for a(b|c)*

.
Table encoding
b “ e e

a Go | g1 | error | error

g2 | error q2 q3

C
C as error ar as
=

@ Smaller than the NFA
@ All transitions are deterministic (no need to backtrack!)

@ Could be even smaller
(see EaC§2.4.4 Hopcroft's Algorithm for minimal DFA)

@ Can generate the lexer using skeleton recogniser seen earlier

15

What can be so hard

Poor language design can complicate lexing

e PL/I does not have reserved words (keywords):
if (cond) then then = else; else else = then
e In Fortran & Algol68 blanks (whitespaces) are insignificant:
-do 10 i = 1,25~=do 10 i = 1,25 (loop, 10 is statement label)
-do 10 i = 1.25~=dol0i = 1.25 (assignment)
e In C, C++, Java string constants can have special characters:
newline, tab, quote, comment delimiters, . . .

16

Building a Lexer

The important point:

All this technology lets us automate lexer construction
Implementer writes down regular expressions

Lexer generator builds NFA, DFA and then writes out code
This reliable process produces fast and robust lexers

For most modern language features, this works:

As a language designer you should think twice before

introducing a feature that defeats a DFA-based lexer

The ones we have seen (e.g. insignificant blanks, non-reserved keywords)
have not proven particularly useful or long lasting

17

Next Lecture

e Context-Free Grammars
e Recursive descent parser

18

