Compiling Techniques
Lecture 6: Abstract Syntax

Where are we?

char

Source —>[Scanner H Tokenizer H Parser H

A parser does more than simply recognize syntax.

Semantic

Analyzer

Generator IR

» Errors

In a multi-pass compiler, the parser builds a syntax tree, that can either be:

- aconcrete syntax tree (aka parser tree) that directly corresponds to the

parsers context-free grammar;

- a simplified abstract syntax tree (AST) that abstract some details away.

Example: Concrete Syntax Tree (Parse Tree)

Example: Grammar for arithmetic expressions in EBNF form

Expr = Term ((+° | °-’) Term)*
Term ::= Factor ((“*’ | /) Factor)*
Factor ::= number | (¢ Expr ¢)’
Removing EBNF syntax

Expr = Term Terms

Terms = (‘4> | °-’) Term Terms | ¢
Term = Factor Factors

Factors ::= (%’ | ¢/’) Factor Factors | ¢
Factor number | (¢ Expr ©)’

Example: Concrete Syntax Tree (Parse Tree)

Example: Grammar for arithmetic expressions in EBNF form

Expr = Term ((+° | °-’) Term)*
Term ::= Factor ((“*’ | /) Factor)*
Factor ::= number | (¢ Expr ¢)’

Removing EBNF syntax + simplifications

Expr = Term ((‘+°> | “-’) Expr | €)
Term = Factor ((*° | ¢/’) Term | ¢)
Factor = number | (¢ Expr €)’

Example: Concrete Syntax Tree (Parse Tree)

Concrete Syntax Tree for Grammar for arithmetic expression

3 * (4 +5) Expr

Term ((+°> | “-°) Expr | ¢€)

— Term = Factor ((** | ¢/’) Term | ¢)
Factor = number “(° Expr €)’°
RN P
Factor *¥ Factor
| |
number Expr
| VA RN Th .
3 Term ‘4’ Term e concrete syntax tree contains
| | a lot of unnecessary information!
Factor Factor , _))
| | It is possible to simplify the tree by
ASEE e removing redundant information.
| |
‘41 ‘5’

Abstract Grammar

The simplifications lead to a new simpler context-free grammar called
Abstract Grammar

Example: Abstract grammar for arithmetic expressions

Expr = BinOp | intLiteral
BinOp = Expr Op Expr
op = add | sub | mul | div
BinOp
P N
Abstract Syntax Tree for 3 * (4 + 5): intLiteral(3) mul BinOp
A N

intLiteral(4) add intLiteral(5)

Choice of Abstract Grammar

For a given concrete grammar, there exists numerous abstract grammars.
We pick the most suitable grammar for the compiler.

Example: Abstract grammar for arithmetic expressions
Expr ::= BinOp | intLiteral

BinOp Expr Op Expr

op add | sub | mul | div

Alternative abstract grammar for arithmetic expressions
Expr AddOp | SubOp | MulOp | DivOp | intLiteral
AddOp ::= Expr add Expr

SubOp = Expr sub Expr
MulOp = Expr mul Expr
DivOp = Expr div Expr

Abstract Syntax Tree

The Abstract Syntax Tree (AST) forms the main intermediate representation of the
compiler’s front-end.

We will perform Semantic Analysis on this representation, that is:

- Name analysis (are all names declared before they are used?)
- Type checking

Char tOken

Source Scanner Tokenizer Parser Semantic IR
Analyzer Generator

» Errors

Implementation of the AST

The AST can be implemented like any other tree data structure

class Expr(ABC):
pass

@dataclass

class BinOp(Expr):
lhs: Expr
op: str
rhs: Expr

@dataclass

value: int

class IntLiteral(Expr):

Abstract grammar

Expr ::= BinOp | intLiteral
BinOp ::= Expr Op Expr

Op = add | sub | mul | div

Op should better be implemented as an Enum

BinOp(IntLiteral(3), "*", BinOp(IntLiteral(4), "+", IntLiteral(5)))

xDSL and MLIR

In this course, we use a framework to help us to implement our compiler.

This framework is called xDSL. It implements the same concepts that are found in
the MLIR - Multi-Level IR Compiler Framework that is used in industry.

We will introduce new concepts of the framework as we go along.

Today we discuss how to represent ASTs with xDSL.

https://qithub.com/xdslproject/xdsl/ https://mlir.llvm.orqg/

10

https://github.com/xdslproject/xdsl/
https://mlir.llvm.org/

Implementation of the AST with xDSL

xDSL helps us to easily define intermediate representations (such as our AST).

Here is the definition of our small AST.

@irdl_op_definition

class BinOp(IRDLOperation):
name = "BinOp"
op = prop_def(StringAttr)
lhs = region_def()
Rhs = region_def()

@irdl_op_definition
class IntLiteral(IRDLOperation):
name = "IntLiteral”
value = prop_def(IntegerAttr[IntegerType])

Implementation of the AST with xDSL

xDSL helps us to easily define intermediate representations (such as our AST).

Here is the definition of our small AST. IRDLOperation is the superclass of all AST

. L nodes
@irdl_op_definition ’//”/”/,,,,,,,,,
class BinOp(IRDLOperation):

name = "BinOp"

op = prop_def(StringAttr)
lhs = region_def()

Rhs = region_def()

@irdl_op_definition
class IntLiteral(IRDLOperation):
name = "IntLiteral”
value = prop_def(IntegerAttr[IntegerType])

Implementation of the AST with xDSL

xDSL helps us to easily define intermediate representations (such as our AST).

Here is the definition of our small AST. IRDLOperation is the superclass of all AST

. L nodes
@irdl_op_definition ’//’//”/,,,,,,,,,
class BinOp(IRDLOperation):

Each Operation has a name

name = "BinOp"

op = prop_def(StringAttr)
lhs = region_def()
Rhs = region_def()

@irdl_op_definition
class IntLiteral(IRDLOperation):
name = "IntLiteral”
value = prop_def(IntegerAttr[IntegerType])

Implementation of the AST with xDSL

xDSL helps us to easily define intermediate representations (such as our AST).

Here is the definition of our small AST.

IRDLOperation is the superclass of all AST
nodes

@irdl_op_definition ’//’//”/,,,,,,,,,
class BinOp(IRDLOperation):

name = "BinOp"

Each Operation has a name

op = prop_def(StringAttr) —_]

lhs = region_def()

Metadata is represented by Attributes

Rhs = region_def()

@irdl_op_definition
class IntLiteral(IRDLOperation):
name = "IntLiteral”
value = prop_def(IntegerAttr[IntegerType])

Implementation of the AST with xDSL

xDSL helps us to easily define intermediate representations (such as our AST).

Here is the definition of our small AST.

@irdl_op_definition

IRDLOperation is the superclass of all AST
nodes

/

class BinOp(IRDLOperation):

name = "BinOp"

Each Operation has a name

op = prop_def(StringAttr)
lhs = region_def()

Metadata is represented by Attributes

Rhs = region_def()

@irdl_op_definition

A region represents nested structure, such as
the children of a node in the AST

\
class IntLiteral(IRDLOperation):

name "IntLiteral"

value = prop_def(IntegerAttr[IntegerType])

15

Implementation of the AST with xDSL

xDSL helps us to easily define intermediate representations (such as our AST).

Here is the definition of our small AST.

@irdl_op_definition

IRDLOperation is the superclass of all AST
nodes

/

class BinOp(IRDLOperation):

name = "BinOp"

Each Operation has a name

op = prop_def(StringAttr)
lhs = region_def()

Metadata is represented by Attributes

Rhs = region_def()

@irdl_op_definition

A region represents nested structure, such as
the children of a node in the AST

\
class IntLiteral(IRDLOperation):

name = "IntLiteral"”

value = prop_def(IntegerAttr[IntegerType]

A macro generates helpful boilerplate code to
make printing, testing, etc. easy

16

Creating Operations with xDSL

XDSL provides a generic and flexible (but verbose) interface to create Operations:

node = Op.create(attributes={"key": value}, regions=[...])

We can easily hide the boilerplate, for example for IntLiteral:

class IntLiteral(IRDLOperation):
@staticmethod
def get(value: int) -> IntLiteral:
return IntLiteral.create(attributes={
"value": IntegerAttr.from_int_and_width(value, 32)})

This allows us to write:

BinOp.get(IntLiteral.get(3), "*",
BinOp.get(IntLiteral.get(4), "+", IntLiteral.get(5)))

17

First Benefits of using xDSL

Using a framework like xDSL has many benefits.
For example, can we easily debug and print our created AST:

>>> xdsl.printer.Printer().print_op(
BinOp.get(IntLiteral.get(3), "*",
BinOp.get(IntLiteral.get(4), "+", IntLiteral.get(5))))

"BinOp"() <{"op" = "*"}> ({
"IntLiteral” () <{"value" = 3 : i32}>
b A
"Bin0p" () <{"op" = "+'}> ({
"IntLiteral”() <{"value" = 4 : i32}>
b A
"IntLiteral”() <{"value" =5 : i32}>
})

})

ChocoPy AST in xDSL — Operations

The CW1 template provides an implementation of the ChocoPy AST in xDSL

which defines the following 22 Operations:

Program

TypeName, ListType, TypedVar

FuncDef, GlobalDecl, NonLocalDecl, VarDef
If, While, For, Pass, Return, Assign

Literal, ExprName, UnaryExpr, BinaryExpr,
IfExpr, ListExpr, CallExpr, IndexExpr

Octotree v

©) cwi-template/choco_ast.pyat - X [EH

Pull requests Issues Marketplace Explore

& compiling-techniques / cw1-template v ® Watch ~ % Fork
<>Code (lIssues 11 Pullrequests @ Actions [Projects [wiki 0 & Settings

¥ main + cwi-template / choco / dialects / choco_ast.py /<> Jump to ~

@ tobiasgrosser update choco to fix type annotations in choco_ast v Latest commit b60s78f 3 day

A2 contributors @ @

720 lines (591 sloc) 24 KB Copy Raw Bla

£
£
i
from xds:
f
i
f
f

14 @ir

18 #-[VarDef | - FuncDefl¥
19 defs = SingleBlockRegionDef()

. 19
21 # Stmtx

22 stmts = SingleBlockRegionDef ()

ChocoPy AST in xDSL — Attributes

An Attribute represents some compile-time metadata of an Operation
Examples of Attributes in the ChocoPy AST are:

- Names, such as the names of functions, variables, or types
- Literal values, e.g. 4, “Hello”, or True
- Operator of binary and unary operations, e.g. +, -, /, ==, 1=, ...

To represent this different metadata, we use these 4 types of Attributes:
StringAttr, IntegerAttr, BoolAttr, NoneAttr

The NoneAttr represents the None value of ChocoPYy.

20

ChocoPy AST in xDSL — Regions

We use Regions to represent nesting. "BinaryExpr"() <{"op" = "+"}> ({

_ "Literal"() <{"value" =4 : i32}>
E.g. BinaryExpr has two regions, }, A
one for each Operand. . "Literal"() <{"value" =5 : i32}>
Regions can have more than one
Operation in them! 0O o

P . "Literal"” () <{"value" = !bool<True>}>
Consider for example the 1f Statement: }’--Eiteral--() <{"value" = 4 : i32}>
"Literal"() <{"value" = 8 : i32}>
The second region represents the }, {
then-block, the third region the else-block. EEZE%E; :%zgizz - 12 f E;ii
})

Next Lecture

o CW1

22

