Compiling Techniques

Lecture 7: Coursework 1 - Intro

The Frontend

char

Source —>[Scanner H Tokenizer H Parser H

‘token

Semantic
Analyzer

Generator IR

» Errors

Coursework: A Python to RISC-V Compiler

CW1 (0%) CW2 (40%) CW3 (60%)
Parsing Semantic Analysis Code Generation
[ChocoPy } [AST } [IR } [RISC-V }

®

Coursework Schedule

Week 1 (Jan 12)
Week 2 (Jan 19)
Week 3 (Jan 26)
Week 4 (Feb 2)
Week 5 (Feb 9)

Learning Week

Deadlines: Friday noon

cwi

Week 6 (Feb 23)
Week 7 (Mar 2)
Week 8 (Mar 9)
Week 9 (Mar 16)
Week 10 (Mar 23)
Week 11 (Mar 30)

Week 11+1 (Apr 6)

cw2

cw3

Coursework

“Check out Learn” — “Compiling Techniques” — “Assessment”

Provisional grades

Part 1: Parser

Test Case Statistics

category hidden pass_public fail public pass hidden fail_hidden
arithmetic-comparison-ops 15 15 0 15
combinations 13 (0 0 11
complex-expressions

control-flow

function-prototypes

literals-identifiers

logical-conditional-ops

simple-statements 7

9 variable-defs-decls 10

Your result for part 1 is 64% out of maximal 70%.

Part 2: Syntax Errors

Test Case Statistics

category hidden pass_public fail public pass_hidden fail_hidden

8 syntax-errors (0] (0] 57 0 0

A recursive-descent parser

def parse funcall():
match(ID)
match (LPAREN)
parse_arglist()
match (RPAREN)

def parse_arglist():
if check(ID):

match(ID)
CFG for function call parse_argrep()
(9 . ey def parse_argre :
funcall ::= ID ”(” arglist) r:':f Chgckfcoﬁ&;):
arglist ::= ID argrep | ¢ match (COMMA)
argrep ::= “,” ID argrep | ¢ match(ID)

parse_argrep()

Parser Class

class Parser:

def check(self, expected : TokenKind) -> bool:
return self.lexer.peek().kind == expected

def match(self, expected : TokenKind) -> Token:
if self.check(expected):
token = self.lexer.peek()
self.lexer.consume()
return token

raise (f“Error: token of kind ${expected) not found”)

What is a token?

A token consists of a token class and other additional information.

ﬂxample: some token classes \ class Token:
IDENTIFIER — foo,main, cnt, ... Kind: TokenKind
NUMBER — 0,-12,1000, ... Value: Any = None
STRING_LITERAL — "Hello world!”, "a”, ...
EQ —_—> —_—
ASSIGN — =
PLUS — +
LPAR — (

