Compiling Techniques

Lecture 8: Dealing with Ambiguity + Bottom-Up Parsing

Ambiguity Definition

e If a grammar has more than one leftmost (or rightmost) derivation for a single
sentential form, the grammar is ambiguous

e This is a problem when interpreting an input program or when building an
internal representation

Ambiguous Grammar: Example Associativity

Ambiguous Grammar: example 1

Expr ::
Op

Expr Op Expr | num | id
+ | *

One possible derivation

Expr

Expr Op Expr

id(x) Op Expr

id(x) + Expr

id(x) + Expr Op Expr
id(x) + num(2) Op Expr
id(x) + num(2) * Expr
id(x) + num(2) * id (y)

X+ (2"y)

This grammar has multiple leftmost
derivations for x + 2 * y.

Another possible derivation
Expr

Expr Op Expr

Expr Op Expr Op Expr
id(x) Op Expr Op Expr
id(x) + Expr Op Expr
id(x) + num(2) Op Expr
id(x) + num(2) * Expr
id(x) + num(2) * id (y)

(x+2)%y

Ambiguous Grammar: Example If-Then-Else

Ambiguous Grammar: example 2

Input

Stmt ::= if Expr then Stmt . :

| 5 Boe dhen Soon elles St if E1 then if E2 then S1 else S2

| OtherStmt
One possible interpretation Another possible interpretation
if E1 then if E1 then

if E2 then if E2 then
S1 S1

else else

S2 S2

Removing Ambiguity

e Must rewrite the grammar to avoid generating the problem
e Match each else to innermost unmatched if (common sense)

Unambiguous grammar

Stmt ::= if Expr then Stmt
| if Expr then WithElse else Stmt
| OotherStmt

WithElse ::= if Expr then WithElse else WithElse
| OotherStmt

e |Intuition: the WithElse restricts what can appear in the then part
e \With this grammar, the example has only one derivation

Derivation with Unambiguous Grammar

Stmt ::= if Expr then Stmt
| if Expr then WithElse else Stmt
| OtherStmt

WithElse ::= if Expr then WithElse else WithElse
| OtherStmt

Derivation for: if E1 then if E2 then S1 else S2

Stmt

if Expr then Stmt

if E1 then Stmt

if E1 then if Expr then WithElse else Stmt
if E1 then if E2 then WithElse else Stmt
if E1 then if E2 then S1 else Stmt
if E1 then if E2 then S1 else S2

Deeper Ambiguity

e Ambiguity usually refers to confusion in the CFG (Context Free Grammar)
e Consider the following case: a = f(17)
In Algol-like languages, f could be either a function or an array

e In such case, context is required

Need to track declarations

Really a type issue, not context-free syntax
Requires en extra-grammatical solution

Must handle these with a different mechanism

o O O O

Step outside the grammar rather than making it more complex. This will be treated
during semantic analysis.

Ambiguity Final Words

Ambiguity arises from two distinct sources:

e Confusion in the context-free syntax (e.q. if then else)
e Confusion that requires context to be resolved (e.qg. array vs function)

Resolving ambiguity:

e To remove context-free ambiguity, rewrite the grammar

e To handle context-sensitive ambiguity delay the detection of such problem
(semantic analysis phase):
For instance, it is legal during syntactic analysis to have: void i ; i=4;

Bottom-Up vs. Top-Down Parsers

Top-Down Parser

A top-down parser builds a derivation by working from the @
start symbol to the input sentence.

Bottom-Up Parser

A bottom-up parser builds a derivation by working from the ﬁ
input sentence back to the start symbol.

Bottom-Up Parsing: Example

Example: CFG

Input: abbcde

Bottom-Up Parsing

abbcde

10

Bottom-Up Parsing: Example

Example: CFG

Input: abbcde

Bottom-Up Parsing

abbcde
aAbcde

11

Bottom-Up Parsing: Example

Example: CFG

Input: abbcde

Bottom-Up Parsing

abbcde
aAbcde
aAde

12

Bottom-Up Parsing: Example

Example: CFG

Goal ::= a A B e
A::=Abc | b
B ::=d

Input: abbcde

Bottom-Up Parsing

abbcde
aAbcde
aAde
aABe

13

Bottom-Up Parsing: Example

Example: CFG

Input: abbcde

Bottom-Up Parsing

abbcde

productions aAbcde
(follow rightmost aAde
derivation) aABe

Goal

reductions

14

Leftmost vs. Rightmost derivation

Leftmost derivation

Rewrite leftmost
nonterminal next

Rightmost derivation

Rewrite rightmost
nonterminal next

Example: CFG

Goal ::= a AB e
A::=Abc | b

B ::=d

Leftmost derivation

LL Parser (Top-Down)

Goal
aABe
aAbcBe
abbcBe
abbcde

Rightmost derivation
LR Parser (Bottom-Up)

Goal
aABe
alAde
alAbcde
abbcde

15

Shift-reduce parser

Consists of a stack and the input

Uses four actions:

1. shift: next symbol is shifted onto the stack

2. reduce: pop the symbols Y , ..., Y, from the stack that form the rhs of a

productionrule X::=Y , ..., Y,

3. accept: stop parsing and report success
4. error: reporting an error

How does the parser know when to shift or when to reduce?

Similarly to the top-down parser, can back-track if wrong decision made or try to look ahead.
Can build a DFA to decide when to shift or to reduce.

16

Shift-reduce parser

Input

abbcde
bbcde
bcde
bcde
cde

de

de

e

e

Operations

shift
shift
reduce
shift
shift
reduce
shift
reduce
shift
reduce
accept

. Example

Stack

ab
aA
aAb
aAbc
aA
aAd
aAB
aABe
Goal

Example: CFG

Goal ::= a AB e
A::=Abc | b
B ::=4d

Choice here: shift or reduce?
Can lookahead one symbol to make decision.

(Knowing what to do needs analysis of the
grammar, see Engineering a Compiler §3.5)

17

Top—Down vs Bottom-Up Parsing

Top-Down Parser Bottom-Up Parser
+ Easy to write by hand + Very efficient
+ [Easy to integrate with rest of the + Supports a larger class of
compiler grammars
- Recursion might lead to - Requires generation tools
performance problems - Rigid integration with the rest of

the compiler

18

Last words on Parsing

/7~ Context-Free Grammars

g TR LR())
o LR(1)
RG
\\g 7
Ny)

Language %= Grammar
There is more than one grammar that can be used to define a language
These grammars might be of different “complexity” (LL(1), LL(k), LR(k))

=» Language complexity = grammar complexity

19

Next Lecture

e Semantic Analysis

20

