
Compiling Techniques
Lecture 9: Semantic Analysis



From Syntax to Semantics

- The parser analyses the Syntax, ensuring that the raw text that forms the 
input program is syntactically well-formed

- In the Semantic Analysis we check if a syntactically well-formed program is 
also semantically well-formed.
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We check if the program has a well-defined meaning.



Syntax vs. Semantic Error
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ChocoPy programs with Syntax Errors

def foo():
  4 plus 3

----^ 

def foo()
---------^ 

  4 + 3

def foo{}:
-------^ 

  4 + 3

def foo():
4 + 3

^

def foo():
  4 + +

------^ 

If a program has a syntax error, we cannot build a valid AST for it!

ChocoPy programs with Semantic Errors

def foo():
  x + 3

def foo():

  "4" + 3

def foo():
  4 = 3

def foo():

  foo(3)

def foo():
  x: int = 4
  x = "3"

x not declared Can’t add
str and int

Can’t assign to 
a literal

foo expects
no argument

Can’t assign str 
to int variable



Programs with Semantic Errors have no meaning!

- We all have an intuition of what this program should mean:

- Our intuition can be mathematically formalized with an operational semantics
- Eventually we want to generate instructions corresponding to the operational 

semantics, here to perform an add instruction on two integer values.

- If our program has semantic errors, it has no operational semantics, and we 
do not know what instructions to generate.
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def add(x: int, y: int) -> int:
    return x + y

These programs have no meaning!



Q: How to detect Semantic Errors? A: Semantic Analysis

We are going to look at three different Semantic Analysis each checking for 
another kind of Semantic Error:

1. Assign Target Analysis
○ Check that the left-hand side of an assignment is a valid target.

2. Name Analysis
○ Check that all names (of variables and functions) are declared before they are used.

3. Type Analysis
○ Check that the program is well-typed given a set of typing rules.
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Each semantic analysis is implemented as a pass
traversing the AST and checking for semantic errors

To help implement semantic analysis passes,
we first implement a generic AST traversal

Semantic Analysis as AST Tree Traversals
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AST Traversal in xDSL

- Reminder: in xDSL all AST nodes are represented as Operations
- The nested tree structure is achieved by Regions
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choco.ast.binary_expr() <{"op" = "*"}> ({
  choco.ast.literal() <{"value" = 3 : i32}>
}, {
  choco.ast.binary_expr() <{"op" = "+"}> ({

choco.ast.literal() <{"value" = 4 : i32}>
  }, {

choco.ast.literal() <{"value" = 5 : i32}>
  })
})



 One class with two functions:

- traverse to iterate over
the tree nodes

- visit is called once per
AST node, should be 
overloaded by subclass

xDSL makes writing an
AST visitor super easy!

First simple AST Visitor
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class Visitor:

    def traverse(self, operation: Operation):
        for r in operation.regions:
            for op in r.ops:
                self.traverse(op)
                    
        self.visit(operation)

    def visit(self, operation: Operation):
        pass



Simple Printer with AST Visitor
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- Print name of each operation in the AST.
- SimplePrinter is a subclass of Visitor and overloads the visit method

class Visitor:
    def traverse(self, operation: Operation): …
    def visit(self, operation: Operation): pass

class SimplePrinter(Visitor):

    def visit(self, operation: Operation):

        print(operation.name)   # print operation name

SimplePrinter().traverse( BinaryExpr.get( … ) )



What if we only want to visit AST 
nodes of a certain type?

Idea: have separate visit methods 
for each AST node type!

A better AST Visitor
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class Visitor:

  def traverse(self, operation: Operation):

    for r in operation.regions:

      …

    if isinstance(operation, BinaryExpr):

      self.visit_binary_expr(operation)

    elif isinstance(operation, Literal):

      self.visit_literal(operation)

  def visit_binary_expr(self, e: BinaryExpr): pass

  def visit_literal(self, l: Literal): pass



A generic better AST Visitor
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Use Python dynamic reflection features to avoid boilerplate code:

class Visitor:

  def traverse(self, op: Operation):

    # get class name of operation in snake_case

    op_class_name = camel_to_snake(type(op).__name__)

    for r in op.regions:

      ...

    # check if subclass has implemented a method with name visit_op_class_name

    # return method if it exists; otherwise None is returned

    visit = get_method(self, f"visit_{op_class_name}")

    if visit:

       visit(op)  # if the visit_op_class_name method exists call it



What if we want to influence the 
traversal of certain AST nodes?

Idea: allow subclasses to  
implement traverse_class_name 
methods and prefer them over 
the generic traversal!

A flexible AST Visitor
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class Visitor:

  def traverse(self, op: Operation):

    class_name = camel_to_snake(type(op).__name__)

    traverse = get_method(self, f"traverse_{class_name}")

    if traverse:  # if a traverse_class_name method 

                  # exists call it

      traverse(operation)

    else:         # otherwise do the generic traversal

      for r in op.regions:

        ...

    visit = get_method(self, f"visit_{class_name}")

    if visit:

       visit(op)



Assign Target Analysis

- The grammar from CW1 allows for arbitrary 
expressions on the left-hand side of an 
assignment, but this allows for example:
      4 = x + 1

- Assign Target Analysis
- Check that left-hand side of all assignments is either:

- a variable name; or
x = 4 + 5

- an index into a list
x[0] = 4 + 5
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…
simple_stmt := `pass`

             | expr

             | `return` [expr]?

             | [expr `=`]+ expr

…



Assign Target Analysis Pass in xDSL
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def check_assign_target(_: MLContext, module: ModuleOp) -> ModuleOp:

    class AssignVisitor(Visitor):
        # visit every assign AST node
        def visit_assign(self, assign: Assign):
            # select the target operation
            target_op = assign.target.ops[0]
            # check if it is a variable name or an index expression
            if isinstance(target_op, ExprName):   return
            if isinstance(target_op, IndexExpr):  return
            # if not: raise a Semantic Error
            raise SemanticError(
                f'Found {type(target_op).__name__} as the left-hand side of an assignment. '
                f'Expected to find variable name or index expression only.')

    AssignVisitor().traverse(module)
    return module



Name Analysis

- Check names of variables and functions are declared before they are used
- We need to remember what names have been declared

- For this we construct a context (aka, environment) that reflects the scopes in the program
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 1 x: int = 4

 2 def foo(x: int):

 3     print(x)

 4 def bar():

 5     y: int = 0

 6     y = x * x

 7     print(y)

 8 

 9 foo(5)

10 bar()

CtxType = Dict[str, Optional['CtxType']]

ctx: CtxType = {

  "x": None,   # variable from line 1

  "foo": {     # function from line 2

    "x": None  # parameter from line 2

  },

  "bar": {     # function from line 4

    "y": None  # variable from line 5

  },

}



Scopes

- It is only legal to refer to an identifier within their scope.

- It is illegal to declare two identifiers with the same name and the same scope
- It is legal to declare a variable in a nested scope, this then shadows the 

identifier in the outer scope which can no longer be accessed.

- Variables that are not declared inside a function have global scope.
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Definition
The scope of an identifier is the part of the program where that identifier is valid.



Name Analysis

- Can we construct the scoping context (and check the names) while we 
traverse the AST?
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Name Analysis

- Can we construct the scoping context (and check the names) while we 
traverse the AST?

- No! Consider for example:

- To check foo, we need to know that bar is a valid name
- To check bar, we need to know that foo is a valid name
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def foo():

    bar()

def bar():

    foo()



Name Analysis

- Can we construct the scoping context (and check the names) while we 
traverse the AST?

- No! Consider for example:

- To check foo, we need to know that bar is a valid name
- To check bar, we need to know that foo is a valid name

We implement Name Analysis by traversing the AST twice,
first to build the context and then a second time for checking.
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def foo():

    bar()

def bar():

    foo()



Name Analysis: Part I - Construct the Name Context
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class BuildContextVisitor(Visitor):

  name_ctx: NameCtx # class to manage the name context 

  # for every variable definition

  def visit_var_def(self, var_def: VarDef):  # add variable name to the current name context

    self.name_ctx.add_var(var_def.typed_var.ops[0].var_name.data)



Name Analysis: Part I - Construct the Name Context
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class BuildContextVisitor(Visitor):

  name_ctx: NameCtx # class to manage the name context 

  # for every variable definition

  def visit_var_def(self, var_def: VarDef):  # add variable name to the current name context

    self.name_ctx.add_var(var_def.typed_var.ops[0].var_name.data)

  # for every function definition

  def traverse_func_def(self, func_def: FuncDef):

    # prepare a visitor for the function body …
    body_visitor = BuildContextVisitor(NameCtx(parent_scope=self.name_ctx))

    # … add the function parameters to the nested name scope …
    for op in func_def.params.ops:     body_visitor.name_ctx.add_var(op.var_name.data)

    # … visit the function body to construct the nested name scope.

    for op in func_def.func_body.ops:  body_visitor.traverse(op)

    # finally, add function and nested scope to the current name context

    self.name_ctx.add_func(func_def.func_name.data, body_visitor.name_ctx)



Name Analysis: Part II - Checking
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class NameAnalysisVisitor(Visitor):

  name_ctx: NameCtx

  def visit_expr_name(self, expr_name: ExprName):

    if expr_name.id.data in self.name_ctx:

      return

    else:

      raise SemanticError(

          f'[Name Analysis Error]: '

          f"Identifier `{expr_name.id.data}' found that was not previously defined.")

   …

1. Check that variables are declared before they are used



Name Analysis: Part II - Checking
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class NameAnalysisVisitor(Visitor):

  name_ctx: NameCtx

  …
  def visit_call_expr(self, call_expr: CallExpr):

    if call_expr.func.data in self.name_ctx:

      return

    else:

      raise SemanticError(

        f'[Name Analysis Error]: '

        f"Identifier `{call_expr.func.data}' found that was not previously defined.")

   …

2. Check that functions are declared before they are called



Name Analysis: Part II - Checking
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class NameAnalysisVisitor(Visitor):

  name_ctx: NameCtx

  …
  def traverse_func_def(self, func_def: FuncDef):

    # select the nested name context from the current name context …
    nested_ctx = self.name_ctx.get_func_ctx(func_def.func_name.data)

    # … and use the nested name context when traversing the function body

    body_visitor = NameAnalysisVisitor(nested_ctx)

    for op in func_def.func_body.ops:

      body_visitor.traverse(op)

   …

3. Make sure that function bodies are checked with the right name context



Name Analysis: Part II - Checking

25

class NameAnalysisVisitor(Visitor):

  name_ctx: NameCtx

  …
  def visit_for(self, for_op: For):

    if for_op.iter_name.data not in self.name_ctx:

      raise SemanticError(

        f'[Name Analysis Error]: '

        f"Identifier `{for_op.iter_name.data}' found that was not previously defined.")

   …

4. Check that the iteration variable in a for was previously defined



Name Analysis: Part II - Checking
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class NameAnalysisVisitor(Visitor):

  name_ctx: NameCtx

  …
  def visit_global_decl(self, global_decl: GlobalDecl):

    if global_decl.decl_name.data in self.name_ctx.global_scope():

      return

    else:

      raise SemanticError(

        f'[Name Analysis Error]: '

        f"Identifier `{global_decl.decl_name.data}' not declared in global scope.")

  …

5. Check that variables in global declarations are declared with global scope



Name Analysis putting the parts together

Name Analysis pass first constructs the context and then performs the checking.
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def name_analysis(_: MLContext, module: ModuleOp) -> ModuleOp:

    # add print, len, and input functions to the global scope

    name_ctx = NameCtx()

    name_ctx.add_func("print", NameCtx())

    name_ctx.add_func("len", NameCtx())

    name_ctx.add_func("input", NameCtx())

    # first construct name context

    BuildContextVisitor(name_ctx).traverse(module)

    # then perform checking

    NameAnalysisVisitor(name_ctx).traverse(module)

    return module


