Compiling Techniques

Lecture 9: Semantic Analysis

From Syntax to Semantics

Lexer
Char tOken
Source Scanner Tokenizer Parser Semantic IR
Analyzer Generator

» Errors

- The parser analyses the Syntax, ensuring that the raw text that forms the
input program is syntactically well-formed

- In the Semantic Analysis we check if a syntactically well-formed program is
also semantically well-formed.

We check if the program has a well-defined meaning.

Syntax vs. Semantic Error

ChocoPy programs with Syntax Errors

def foo(): def foo{}: def foo() def foo(): def foo():
4 +3 = 00l=e-ea-- A meeeeeaa- A 4 plus 3 4 + +
A 4 + 3 4 + 3 e A

If a program has a syntax error, we cannot build a valid AST for it!

ChocoPy programs with Semantic Errors

def foo(): def foo(): def foo(): def foo(): def foo():
X + 3 " 4 3 4 = 3 foo(3) X: int = 4
X = Il3ll
x not declared Can’t add Can'’t assign to foo expects Can'’t assign str

strand int a literal no argument to int variable

3

Programs with Semantic Errors have no meaning!

We all have an intuition of what this program should mean:

def add(x: int, y: int) -> int:
return x + vy

- Our intuition can be mathematically formalized with an operational semantics
- Eventually we want to generate instructions corresponding to the operational
semantics, here to perform an add instruction on two integer values.

- If our program has semantic errors, it has no operational semantics, and we
do not know what instructions to generate.

These programs have no meaning!

Q: How to detect Semantic Errors? A: Semantic Analysis

We are going to look at three different Semantic Analysis each checking for
another kind of Semantic Error:

1. Assign Target Analysis

o Check that the left-hand side of an assignment is a valid target.

2. Name Analysis
o Check that all names (of variables and functions) are declared before they are used.

3. Type Analysis

o Check that the program is well-typed given a set of typing rules.

Semantic Analysis as AST Tree Traversals

Each semantic analysis is implemented as a pass
traversing the AST and checking for semantic errors

AST
Parser Semantic
Analyzer Generator

» Errors

To help implement semantic analysis passes,
we first implement a generic AST traversal

AST Traversal in xDSL

- Reminder: in xDSL all AST nodes are represented as Operations
- The nested tree structure is achieved by Regions

BinaryExpr
[Ilopll=ll*ll]

choco.ast.binary_expr() <{"op" = "*"}> ({
choco.ast.literal() <{"value" = 3 : i32}>
b A
choco.ast.binary_expr() <{"op" = "+"}> ({ Literal BinaryExpr
choco.ast.literal() <{"value" = 4 : i32}> [*value"=3] i
b A
choco.ast.literal() <{"value" =5 : i32}>
})
1) Literal Literal
["value"=4] ["value"=5]

First simple AST Visitor

One class with two functions:

- traverse to iterate over
the tree nodes

- visit is called once per
AST node, should be
overloaded by subclass

xDSL makes writing an
AST visitor super easy!

class Visitor:

def traverse(self, operation: Operation):
for r in operation.regions:
for op in r.ops:
self.traverse(op)

self.visit(operation)

def visit(self, operation: Operation):
pass

Simple Printer with AST Visitor

- Print name of each operation in the AST.
- SimplePrinter is a subclass of Visitor and overloads the visit method

class Visitor:
def traverse(self, operation: Operation): ...
def visit(self, operation: Operation): pass

class SimplePrinter(Visitor):
def visit(self, operation: Operation):
print(operation.name) # print operation name

SimplePrinter().traverse(BinaryExpr.get(...))

A better AST Visitor

What if we only want to visit AST
nodes of a certain type?

Idea: have separate visit methods
for each AST node type!

class Visitor:
def traverse(self, operation: Operation):
for r in operation.regions:

if isinstance(operation, BinaryExpr):
self.visit_binary_ expr(operation)

elif isinstance(operation, Literal):
self.visit _literal(operation)

def visit_binary_expr(self, e: BinaryExpr): pass
def visit_literal(self, 1l: Literal): pass

10

A generic better AST Visitor
Use Python dynamic reflection features to avoid boilerplate code:

class Visitor:
def traverse(self, op: Operation):
get class name of operation in snake case
op_class name = camel to_snake(type(op)._ name)
for r in op.regions:

check if subclass has implemented a method with name visit op class name
return method if it exists; otherwise None is returned
visit = get method(self, f"visit {op_class_name}")
if visit:
visit(op) # if the visit op class name method exists call it

11

A flexible AST Visitor

What if we want to influence the
traversal of certain AST nodes”?

Idea: allow subclasses to
Implement traverse_class_name
methods and prefer them over
the generic traversal!

class Visitor:
def traverse(self, op: Operation):
class_name = camel_to_snake(type(op).__name__)
traverse = get _method(self, f"traverse_{class_name}")
if traverse: # if a traverse_class_name method
exists call it
traverse(operation)
else: # otherwise do the generic traversal

for r in op.regions:

visit = get _method(self, f"visit {class_name}")
if visit:
visit(op)

12

Assign Target Analysis

- The grammar from CW1 allows for arbitrary

' ; imple stmt := ° :
expressions on the left-hand side of an Simple_stm | ez;is
assignment, but this allows for example: | return [expr]?

4 = x + 1 | [expr "=+ expr

- Assign Target Analysis
- Check that left-hand side of all assignments is either:
- avariable name; or
X =4+5
- anindex into a list
x[0] =4 + 5

13

Assign Target Analysis Pass in xDSL

def check_assign_target(_: MLContext, module: ModuleOp) -> ModuleOp:

class AssignVisitor(Visitor):
visit every assign AST node
def visit_assign(self, assign: Assign):
select the target operation
target_op = assign.target.ops[9]
check if it is a variable name or an index expression
if isinstance(target_op, ExprName): return
if isinstance(target_op, IndexExpr): return
if not: raise a Semantic Error
raise SemanticError(
f'Found {type(target op). name__} as the left-hand side of an assignment.
f'Expected to find variable name or index expression only.')

AssignVisitor().traverse(module)
return module

14

Name Analysis

- Check names of variables and functions are declared before they are used

- We need to remember what names have been declared
- For this we construct a context (aka, environment) that reflects the scopes in the program

1 x: int = 4
2 def foo(x: int):

3 print(x)

4 def bar():

5 y: int = ©
6 y = X * X
7 print(y)

8

9 foo(5)
10 bar()

ctx: CtxType

"x": None,

"foo": {
"x": None

}s

"bar": {
"y": None

}s

{

#
#
#

+H

CtxType = Dict[str, Optional['CtxType']]

variable from line 1
function from line 2

parameter from line 2

function from line 4

variable from line 5

15

Scopes

Definition
The scope of an identifier is the part of the program where that identifier is valid.

- ltis only legal to refer to an identifier within their scope.
- ltis illegal to declare two identifiers with the same name and the same scope
- Itis legal to declare a variable in a nested scope, this then shadows the

identifier in the outer scope which can no longer be accessed.

- Variables that are not declared inside a function have global scope.

16

Name Analysis

- Can we construct the scoping context (and check the names) while we
traverse the AST?

17

Name Analysis

- Can we construct the scoping context (and check the names) while we
traverse the AST?
def foo():

- No! Consider for example: bar()

def bar():
foo()

- To check foo, we need to know that bar is a valid name
- To check bar, we need to know that foo is a valid name

18

Name Analysis

- Can we construct the scoping context (and check the names) while we
traverse the AST?
def foo():

- No! Consider for example: bar()

def bar():
foo()

- To check foo, we need to know that bar is a valid name
- To check bar, we need to know that foo is a valid name

We implement Name Analysis by traversing the AST twice,
first to build the context and then a second time for checking.

19

Name Analysis: Part | - Construct the Name Context

class BuildContextVisitor(Visitor):
name_ctx: NameCtx

def visit_var_def(self, var_def: VarDef):

self.name_ctx.add_var(var_def.typed_var.ops[@].var_name.data)

20

Name Analysis: Part | - Construct the Name Context

class BuildContextVisitor(Visitor):

name_ctx: NameCtx # class to manage the name context

for every variable definition

def visit_var_def(self, var_def: VarDef): # add variable name to the current name context
self.name_ctx.add_var(var_def.typed var.ops[@].var_name.data)

for every function definition

def traverse_func_def(self, func_def: FuncDef):
prepare a visitor for the function body ...
body_visitor = BuildContextVisitor(NameCtx(parent_scope=self.name_ctx))

... add the function parameters to the nested name scope ...
for op in func_def.params.ops: body_visitor.name_ctx.add_var(op.var_name.data)
... visit the function body to construct the nested name scope.

for op in func_def.func_body.ops: body_visitor.traverse(op)
finally, add function and nested scope to the current name context

self.name_ctx.add_func(func_def.func_name.data, body_visitor.name_ctx)
21

Name Analysis: Part Il - Checking

1. Check that variables are declared before they are used

class NameAnalysisVisitor(Visitor):
name_ctx: NameCtx

def visit_expr_name(self, expr_name: ExprName):
if expr_name.id.data in self.name_ctx:
return
else:
raise SemanticError(

f'[Name Analysis Error]:
f"Identifier " {expr_name.id.data}' found that was not previously defined.")

22

Name Analysis: Part Il - Checking

2. Check that functions are declared before they are called

class NameAnalysisVisitor(Visitor):
name_ctx: NameCtx

def visit_call_expr(self, call expr: CallExpr):
if call_expr.func.data in self.name_ctx:
return
else:
raise SemanticError(

f'[Name Analysis Error]:
f"Identifier "{call _expr.func.data}' found that was not previously defined.")

23

Name Analysis: Part Il - Checking

3. Make sure that function bodies are checked with the right name context

class NameAnalysisVisitor(Visitor):
name_ctx: NameCtx

def traverse_func_def(self, func_def: FuncDef):
select the nested name context from the current name context ...
nested_ctx = self.name_ctx.get_func_ctx(func_def.func_name.data)
... and use the nested name context when traversing the function body
body_visitor = NameAnalysisVisitor(nested_ctx)
for op in func_def.func_body.ops:
body visitor.traverse(op)

24

Name Analysis: Part Il - Checking

4. Check that the iteration variable in a for was previously defined

class NameAnalysisVisitor(Visitor):
name_ctx: NameCtx

def visit_for(self, for_op: For):
if for_op.iter_name.data not in self.name_ctx:
raise SemanticError(

f'[Name Analysis Error]:
f"Identifier "{for_op.iter_name.data}' found that was not previously defined.")

25

Name Analysis: Part Il - Checking

5. Check that variables in global declarations are declared with global scope

class NameAnalysisVisitor(Visitor):
name_ctx: NameCtx

def visit_global_decl(self, global decl: GlobalDecl):
if global decl.decl name.data in self.name_ctx.global scope():
return
else:
raise SemanticError(
f'[Name Analysis Error]: '
f"Identifier "~ {global decl.decl name.data}' not declared in global scope.")

26

Name Analysis putting the parts together

Name Analysis pass first constructs the context and then performs the checking.

def name_analysis(_: MLContext, module: ModuleOp) -> ModuleOp:
add print, len, and input functions to the global scope
name_ctx = NameCtx()
name_ctx.add func("print", NameCtx())
name_ctx.add func("len", NameCtx())
name_ctx.add_func("input", NameCtx())
first construct name context
BuildContextVisitor(name ctx).traverse(module)
then perform checking
NameAnalysisVisitor(name_ctx).traverse(module)
return module

