
Compiling Techniques
Lecture 9: Semantic Analysis

From Syntax to Semantics

- The parser analyses the Syntax, ensuring that the raw text that forms the
input program is syntactically well-formed

- In the Semantic Analysis we check if a syntactically well-formed program is
also semantically well-formed.

2

ScannerSource IR

Errors

Tokenizer

char

Parser Semantic
Analyzer

token

IR
Generator

AST AST
Lexer

We check if the program has a well-defined meaning.

Syntax vs. Semantic Error

3

ChocoPy programs with Syntax Errors

def foo():
 4 plus 3

----^

def foo()
---------^

 4 + 3

def foo{}:
-------^

 4 + 3

def foo():
4 + 3

^

def foo():
 4 + +

------^

If a program has a syntax error, we cannot build a valid AST for it!

ChocoPy programs with Semantic Errors

def foo():
 x + 3

def foo():

 "4" + 3

def foo():
 4 = 3

def foo():

 foo(3)

def foo():
 x: int = 4
 x = "3"

x not declared Can’t add
str and int

Can’t assign to
a literal

foo expects
no argument

Can’t assign str
to int variable

Programs with Semantic Errors have no meaning!

- We all have an intuition of what this program should mean:

- Our intuition can be mathematically formalized with an operational semantics
- Eventually we want to generate instructions corresponding to the operational

semantics, here to perform an add instruction on two integer values.

- If our program has semantic errors, it has no operational semantics, and we
do not know what instructions to generate.

4

def add(x: int, y: int) -> int:
 return x + y

These programs have no meaning!

Q: How to detect Semantic Errors? A: Semantic Analysis

We are going to look at three different Semantic Analysis each checking for
another kind of Semantic Error:

1. Assign Target Analysis
○ Check that the left-hand side of an assignment is a valid target.

2. Name Analysis
○ Check that all names (of variables and functions) are declared before they are used.

3. Type Analysis
○ Check that the program is well-typed given a set of typing rules.

5

Each semantic analysis is implemented as a pass
traversing the AST and checking for semantic errors

To help implement semantic analysis passes,
we first implement a generic AST traversal

Semantic Analysis as AST Tree Traversals

6

Errors

Parser Semantic
Analyzer

IR
Generator

AST AST

AST Traversal in xDSL

- Reminder: in xDSL all AST nodes are represented as Operations
- The nested tree structure is achieved by Regions

7

choco.ast.binary_expr() <{"op" = "*"}> ({
 choco.ast.literal() <{"value" = 3 : i32}>
}, {
 choco.ast.binary_expr() <{"op" = "+"}> ({

choco.ast.literal() <{"value" = 4 : i32}>
 }, {

choco.ast.literal() <{"value" = 5 : i32}>
 })
})

 One class with two functions:

- traverse to iterate over
the tree nodes

- visit is called once per
AST node, should be
overloaded by subclass

xDSL makes writing an
AST visitor super easy!

First simple AST Visitor

8

class Visitor:

 def traverse(self, operation: Operation):
 for r in operation.regions:
 for op in r.ops:
 self.traverse(op)

 self.visit(operation)

 def visit(self, operation: Operation):
 pass

Simple Printer with AST Visitor

9

- Print name of each operation in the AST.
- SimplePrinter is a subclass of Visitor and overloads the visit method

class Visitor:
 def traverse(self, operation: Operation): …
 def visit(self, operation: Operation): pass

class SimplePrinter(Visitor):

 def visit(self, operation: Operation):

 print(operation.name) # print operation name

SimplePrinter().traverse(BinaryExpr.get(…))

What if we only want to visit AST
nodes of a certain type?

Idea: have separate visit methods
for each AST node type!

A better AST Visitor

10

class Visitor:

 def traverse(self, operation: Operation):

 for r in operation.regions:

 …

 if isinstance(operation, BinaryExpr):

 self.visit_binary_expr(operation)

 elif isinstance(operation, Literal):

 self.visit_literal(operation)

 def visit_binary_expr(self, e: BinaryExpr): pass

 def visit_literal(self, l: Literal): pass

A generic better AST Visitor

11

Use Python dynamic reflection features to avoid boilerplate code:

class Visitor:

 def traverse(self, op: Operation):

 # get class name of operation in snake_case

 op_class_name = camel_to_snake(type(op).__name__)

 for r in op.regions:

 ...

 # check if subclass has implemented a method with name visit_op_class_name

 # return method if it exists; otherwise None is returned

 visit = get_method(self, f"visit_{op_class_name}")

 if visit:

 visit(op) # if the visit_op_class_name method exists call it

What if we want to influence the
traversal of certain AST nodes?

Idea: allow subclasses to
implement traverse_class_name
methods and prefer them over
the generic traversal!

A flexible AST Visitor

12

class Visitor:

 def traverse(self, op: Operation):

 class_name = camel_to_snake(type(op).__name__)

 traverse = get_method(self, f"traverse_{class_name}")

 if traverse: # if a traverse_class_name method

 # exists call it

 traverse(operation)

 else: # otherwise do the generic traversal

 for r in op.regions:

 ...

 visit = get_method(self, f"visit_{class_name}")

 if visit:

 visit(op)

Assign Target Analysis

- The grammar from CW1 allows for arbitrary
expressions on the left-hand side of an
assignment, but this allows for example:
 4 = x + 1

- Assign Target Analysis
- Check that left-hand side of all assignments is either:

- a variable name; or
x = 4 + 5

- an index into a list
x[0] = 4 + 5

13

…
simple_stmt := `pass`

 | expr

 | `return` [expr]?

 | [expr `=`]+ expr

…

Assign Target Analysis Pass in xDSL

14

def check_assign_target(_: MLContext, module: ModuleOp) -> ModuleOp:

 class AssignVisitor(Visitor):
 # visit every assign AST node
 def visit_assign(self, assign: Assign):
 # select the target operation
 target_op = assign.target.ops[0]
 # check if it is a variable name or an index expression
 if isinstance(target_op, ExprName): return
 if isinstance(target_op, IndexExpr): return
 # if not: raise a Semantic Error
 raise SemanticError(
 f'Found {type(target_op).__name__} as the left-hand side of an assignment. '
 f'Expected to find variable name or index expression only.')

 AssignVisitor().traverse(module)
 return module

Name Analysis

- Check names of variables and functions are declared before they are used
- We need to remember what names have been declared

- For this we construct a context (aka, environment) that reflects the scopes in the program

15

 1 x: int = 4

 2 def foo(x: int):

 3 print(x)

 4 def bar():

 5 y: int = 0

 6 y = x * x

 7 print(y)

 8

 9 foo(5)

10 bar()

CtxType = Dict[str, Optional['CtxType']]

ctx: CtxType = {

 "x": None, # variable from line 1

 "foo": { # function from line 2

 "x": None # parameter from line 2

 },

 "bar": { # function from line 4

 "y": None # variable from line 5

 },

}

Scopes

- It is only legal to refer to an identifier within their scope.

- It is illegal to declare two identifiers with the same name and the same scope
- It is legal to declare a variable in a nested scope, this then shadows the

identifier in the outer scope which can no longer be accessed.

- Variables that are not declared inside a function have global scope.

16

Definition
The scope of an identifier is the part of the program where that identifier is valid.

Name Analysis

- Can we construct the scoping context (and check the names) while we
traverse the AST?

17

Name Analysis

- Can we construct the scoping context (and check the names) while we
traverse the AST?

- No! Consider for example:

- To check foo, we need to know that bar is a valid name
- To check bar, we need to know that foo is a valid name

18

def foo():

 bar()

def bar():

 foo()

Name Analysis

- Can we construct the scoping context (and check the names) while we
traverse the AST?

- No! Consider for example:

- To check foo, we need to know that bar is a valid name
- To check bar, we need to know that foo is a valid name

We implement Name Analysis by traversing the AST twice,
first to build the context and then a second time for checking.

19

def foo():

 bar()

def bar():

 foo()

Name Analysis: Part I - Construct the Name Context

20

class BuildContextVisitor(Visitor):

 name_ctx: NameCtx # class to manage the name context

 # for every variable definition

 def visit_var_def(self, var_def: VarDef): # add variable name to the current name context

 self.name_ctx.add_var(var_def.typed_var.ops[0].var_name.data)

Name Analysis: Part I - Construct the Name Context

21

class BuildContextVisitor(Visitor):

 name_ctx: NameCtx # class to manage the name context

 # for every variable definition

 def visit_var_def(self, var_def: VarDef): # add variable name to the current name context

 self.name_ctx.add_var(var_def.typed_var.ops[0].var_name.data)

 # for every function definition

 def traverse_func_def(self, func_def: FuncDef):

 # prepare a visitor for the function body …
 body_visitor = BuildContextVisitor(NameCtx(parent_scope=self.name_ctx))

 # … add the function parameters to the nested name scope …
 for op in func_def.params.ops: body_visitor.name_ctx.add_var(op.var_name.data)

 # … visit the function body to construct the nested name scope.

 for op in func_def.func_body.ops: body_visitor.traverse(op)

 # finally, add function and nested scope to the current name context

 self.name_ctx.add_func(func_def.func_name.data, body_visitor.name_ctx)

Name Analysis: Part II - Checking

22

class NameAnalysisVisitor(Visitor):

 name_ctx: NameCtx

 def visit_expr_name(self, expr_name: ExprName):

 if expr_name.id.data in self.name_ctx:

 return

 else:

 raise SemanticError(

 f'[Name Analysis Error]: '

 f"Identifier `{expr_name.id.data}' found that was not previously defined.")

 …

1. Check that variables are declared before they are used

Name Analysis: Part II - Checking

23

class NameAnalysisVisitor(Visitor):

 name_ctx: NameCtx

 …
 def visit_call_expr(self, call_expr: CallExpr):

 if call_expr.func.data in self.name_ctx:

 return

 else:

 raise SemanticError(

 f'[Name Analysis Error]: '

 f"Identifier `{call_expr.func.data}' found that was not previously defined.")

 …

2. Check that functions are declared before they are called

Name Analysis: Part II - Checking

24

class NameAnalysisVisitor(Visitor):

 name_ctx: NameCtx

 …
 def traverse_func_def(self, func_def: FuncDef):

 # select the nested name context from the current name context …
 nested_ctx = self.name_ctx.get_func_ctx(func_def.func_name.data)

 # … and use the nested name context when traversing the function body

 body_visitor = NameAnalysisVisitor(nested_ctx)

 for op in func_def.func_body.ops:

 body_visitor.traverse(op)

 …

3. Make sure that function bodies are checked with the right name context

Name Analysis: Part II - Checking

25

class NameAnalysisVisitor(Visitor):

 name_ctx: NameCtx

 …
 def visit_for(self, for_op: For):

 if for_op.iter_name.data not in self.name_ctx:

 raise SemanticError(

 f'[Name Analysis Error]: '

 f"Identifier `{for_op.iter_name.data}' found that was not previously defined.")

 …

4. Check that the iteration variable in a for was previously defined

Name Analysis: Part II - Checking

26

class NameAnalysisVisitor(Visitor):

 name_ctx: NameCtx

 …
 def visit_global_decl(self, global_decl: GlobalDecl):

 if global_decl.decl_name.data in self.name_ctx.global_scope():

 return

 else:

 raise SemanticError(

 f'[Name Analysis Error]: '

 f"Identifier `{global_decl.decl_name.data}' not declared in global scope.")

 …

5. Check that variables in global declarations are declared with global scope

Name Analysis putting the parts together

Name Analysis pass first constructs the context and then performs the checking.

27

def name_analysis(_: MLContext, module: ModuleOp) -> ModuleOp:

 # add print, len, and input functions to the global scope

 name_ctx = NameCtx()

 name_ctx.add_func("print", NameCtx())

 name_ctx.add_func("len", NameCtx())

 name_ctx.add_func("input", NameCtx())

 # first construct name context

 BuildContextVisitor(name_ctx).traverse(module)

 # then perform checking

 NameAnalysisVisitor(name_ctx).traverse(module)

 return module

