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The Brouwer Fixed Point Theorem
We will use the following to prove Nash’s Theorem.
Theorem(Brouwer, 1909) Every continuous function
f : D → D mapping a compact and convex, nonempty subset
D ⊆ Rm to itself has a “fixed point”, i.e., there is x∗ ∈ D such
that f (x∗) = x∗.
Explanation:
▶ A “continuous” function is intuitively one whose graph has

no “jumps”.
▶ For our current purposes, we don’t need to know exactly

what “compact and convex” means.
(See the appendix of this lecture for definitions.)
We only state the following fact:
Fact The set of profiles X = X1 × . . .× Xn is a compact and
convex subset of Rm, where m = Σn

i=1mi , with mi = |Si |.



Simple cases of Brouwer’s Theorem
To see a simple example of what Brouwer’s theorem says,
consider the interval [0, 1] = {x | 0 ≤ x ≤ 1}.
[0, 1] is compact and convex. ( [0, 1]n is also compact &
convex.)
For a continuous f : [0, 1] → [0, 1], you can “visualize” why the
theorem is true. Here’s the “visual proof” in the 1-dimensional
case: 1
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For f : [0, 1]2 → [0, 1]2, the theorem is already far less obvious:
“the crumpled sheet experiment”.



brief remarks

▶ Brouwer’s Theorem is a deep and important result in
topology.

▶ It is not very easy to prove, and we won’t prove it.
▶ If you are desperate to see a proof, there are many. See,

e.g., any of these:
▶ [Milnor’66] (Differential Topology). (uses, e.g., Sard’s

Theorem).
▶ [Scarf’67 & ’73, Kuhn’68, Border’89], uses Sperner’s

Lemma.
▶ [Rotman’88] (Algebraic Topology). (uses homology, etc.)
▶ [D. Gale’79], possibly my favorite proof: uses the fact

that the game of (n-dimensional) HEX is a finite
“win-lose” game.



proof of Nash’s theorem

Proof: (Nash’s 1951 proof)
We will define a continuous function f : X → X , where
X = X1 × . . .× Xn, and we will show that if f (x∗) = x∗ then
x∗ = (x∗1 , . . . , x

∗
n ) must be a Nash Equilibrium.

By Brouwer’s Theorem, we will be done.

(In fact, it will turn out that x∗ is a Nash Equilibrium if and
only if f (x∗) = x∗.)

We start with a claim.



Claim: A profile x∗ = (x∗1 , . . . , x
∗
n ) ∈ X is a Nash Equilibrium

if and only if, for every player i , and every pure strategy πi ,j ,
j ∈ Si :

Ui(x
∗) ≥ Ui(x

∗
−i ; πi ,j).

Proof of claim: If x∗ is a NE then, it is obvious by definition
that Ui(x

∗) ≥ Ui(x
∗
−i , πi ,j).

For the other direction: by calculation it is easy to see that for
any mixed strategy xi ∈ Xi ,

Ui(x
∗
−i ; xi) =

mi∑
j=1

xi(j) ∗ Ui(x
∗
−i ; πi ,j)

By assumption, Ui(x
∗) ≥ Ui(x

∗
−i ; πi ,j), for all j .

So, clearly Ui(x
∗) ≥ Ui(x

∗
−i ; xi), for any xi ∈ Xi , because

Ui(x
∗
−i ; xi) =

∑mi

j=1 xi(j) ∗ Ui(x
∗
−i ; πi ,j) ≤

∑mi

j=1 xi(j) ∗ Ui(x
∗) =

Ui(x
∗).

Hence, each x∗i is a best response strategy to x∗−i . In other
words, x∗ is a Nash Equilibrium.



So, rephrasing our goal, we want to find
x∗ = (x∗1 , . . . , x

∗
n ) such that

Ui(x
∗
−i ; πi ,j) ≤ Ui(x

∗)

i.e., such that

Ui(x
∗
−i ; πi ,j)− Ui(x

∗) ≤ 0

for all players i ∈ N , and all j = 1, . . . ,mi .
For a mixed profile x = (x1, x2, . . . , xn) ∈ X : let

φi ,j(x) = max{0,Ui(x−i ; πi ,j)− Ui(x)}

Intuitively, φi ,j(x) measures “how much better off” player i
would be if he/she picked πi ,j instead of xi (and everyone else
remained unchanged).



Define f : X → X as follows: For x = (x1, x2, . . . , xn) ∈ X , let

f (x) = (x ′1, x
′
2, . . . , x

′
n)

where for all i , and j = 1, . . . ,mi ,

x ′i (j) =
xi(j) + φi ,j(x)

1 +
∑mi

k=1 φi ,k(x)

Facts:
1. If x ∈ X , then f (x) = (x ′1, . . . , x

′
n) ∈ X .

2. f : X → X is continuous.
(These facts are not hard to check.)

Thus, by Brouwer, there exists x∗ = (x∗1 , x
∗
2 , . . . , x

∗
n ) ∈ X such

that f (x∗) = x∗.
Now we have to show x∗ is a NE.



For each i , and for j = 1, . . . ,mi ,

x∗i (j) =
x∗i (j) + φi ,j(x

∗)

1 +
∑mi

k=1 φi ,k(x∗)

thus,

x∗i (j)(1 +

mi∑
k=1

φi ,k(x
∗)) = x∗i (j) + φi ,j(x

∗)

hence,

x∗i (j)

mi∑
k=1

φi ,k(x
∗) = φi ,j(x

∗)

We will show that in fact this implies φi ,j(x
∗) must be equal to

0 for all j .



Claim: For any mixed profile x , for each player i , there is
some j such that xi(j) > 0 and φi ,j(x) = 0.
Proof of claim: For any x ∈ X ,

φi ,j(x) = max{0,Ui(x−i ; πi ,j)− Ui(x)}

Since Ui(x) is the “weighted average” of Ui(x−i ; πi ,j)’s, based
on the “weights” in xi , there must be some j used in xi , i.e.,
with xi(j) > 0, such that Ui(x−i ; πi ,j) is no more than the
weighted average. I.e.,

Ui(x−i ; πi ,j) ≤ Ui(x)
I.e.,

Ui(x−i ; πi ,j)− Ui(x) ≤ 0

Therefore,
φi ,j(x) = max{0,Ui(x−i ; πi ,j)− Ui(x)} = 0



Thus, for such a j , x∗i (j) > 0 and

x∗i (j)

mi∑
k=1

φi ,k(x
∗) = 0 = φi ,j(x

∗)

But, since φi ,k(x
∗)’s are all ≥ 0, this means φi ,k(x

∗) = 0 for
all k = 1, . . . ,mi . Thus, for all players i , and for j = 1, . . . ,mi ,

Ui(x
∗) ≥ Ui(x

∗
−i ; πi ,j)

Q.E.D. (Nash’s Theorem)
In fact, since Ui(x

∗) =
∑mi

j=1 x
∗
i (j) · Ui(x

∗
−i ; πi ,j) is the

“weighted average” of Ui(x
∗
−i , πi ,j)’s, we see that:

Useful Corollary for Nash Equilibria:
Ui(x

∗) = Ui(x
∗
−i , πi ,j), whenever x∗i (j) > 0.

Rephrased: In a Nash Equilibrium x∗, if x∗i (j) > 0 then
Ui(x

∗
−i ; πi ,j) = Ui(x

∗); i.e., each such πi ,j is itself a “best
response” to x∗−i .
This is a subtle but very important point. It will be useful later
when we want to compute NE’s.



Remarks

▶ The proof using Brouwer gives ostensibly no clue how to
compute a Nash Equilibrium. It just says it exists!

▶ We will come back to the question of computing Nash
Equilibria in general games later in the course.

▶ We start next time with a special case: 2-player zero-sum
games (e.g., of the Rock-Paper-Scissor’s variety). These
have an elegant theory (von Neumann 1928), predating
Nash.

▶ To compute solutions for 2p-zero-sum games, Linear
Programming will come into play.
Linear Programming is a very important tool in
algorithms and optimization. Its uses go FAR beyond
solving zero-sum games. So it will be a good opportunity
to learn about LP.



NE need not be “Pareto optimal”

Given a profile x ∈ X in an n-player game, the “(purely
utilitarian) social welfare” is: U1(x) + U2(x) + . . .+ Un(x).
A profile x ∈ X is pareto efficient (a.k.a., pareto optimal)
if there is no other profile x ′ such that Ui(x) ≤ Ui(x

′) for all
players i , and Uk(x) < Uk(x

′) for some player k .



Note: The Prisoner’s Dilemma game shows NE need not
optimize social welfare, nor be Pareto optimal.
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Indeed, there is a unique NE, (Defect, Defect), and it neither
optimizes social welfare nor is Pareto optimal, because
(Cooperate, Cooperate) gives a higher payoff to both players.



application in biology: evolution as a game
▶ One way to view how we might “arrive” at a Nash

equilibrium is through a process of evolution.
▶ John Maynard Smith (1972-3,’82) introduced game

theoretic ideas into evolutionary biology with the concept
of an Evolutionarily Stable Strategy.

▶ Your extra reading (for fun) is from Straffin(1993) which
gives an amusing introduction to this.

▶ Intuitively, a mixed strategy can be viewed as percentages
in a population that exhibit different behaviors
(strategies).

▶ Their behaviors effect each other’s survival, and thus each
strategy has a certain survival value dependent on the
strategy of others.

▶ The population is in “evolutionary equilibrium” if no
“mutant” strategy could invade it and “take over”.



The Hawk-Dove Game
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Large population of same “species”, each behaving as either
“hawk” or “dove”.
What proportions will behaviors eventually stabilize to (if at
all)?



Definition of ESS

Definition: A 2-player game is symmetric if S1 = S2, and
for all s1, s2 ∈ S1, u1(s1, s2) = u2(s2, s1).

Definition: In a 2p-sym-game, mixed strategy x∗1 is an
Evolutionarily Stable Strategy (ESS), if:

1. x∗1 is a best response to itself, i.e., x∗ = (x∗1 , x
∗
1 ) is a

symmetric Nash Equilibrium, &
2. If x ′1 ̸= x∗1 is another best response to x∗1 , then

U1(x
′
1, x

′
1) < U1(x

∗
1 , x

′
1).

Nash (1951, p. 289) also proves that every symmetric game
has a symmetric NE, (x∗1 , x

∗
1 ). (However, not every symmetric

game has a ESS.)



A little justification of the definition of ESS
Suppose x∗1 is an ESS. Consider the “fitness function”, F (x1),
for a “mutant” strategy x ′1 that “invades” (becoming a small
ϵ > 0 fraction of) a current ESS population, x∗1 . Then, Claim:

F (x ′1)
.
= (1 − ϵ)U1(x

′
1, x

∗
1 ) + ϵU1(x

′
1, x

′
1) (1)

< (1 − ϵ)U1(x
∗
1 , x

∗
1 ) + ϵU1(x

∗
1 , x

′
1)

.
= F (x∗) (2)

Proof: if x ′1 is a best response to the ESS x∗1 , then
U1(x

′
1, x

∗
1 ) = U1(x

∗
1 , x

∗
1 ) and U1(x

′
1, x

′
1) < U1(x

∗
1 , x

′
1), and since

we assume ϵ > 0, the strict inequality in (2) follows. If on the
other hand x ′1 is not a best response to x∗1 , then
U1(x

′
1, x

∗
1 ) < U1(x

∗
1 , x

∗
1 ), and for a small enough ϵ > 0, we have

(1 − ϵ)(U1(x
∗
1 , x

∗
1 )− U1(x

′
1, x

∗
1 )) > ϵ(U1(x

′
1, x

′
1)− U1(x

∗
1 , x

′
1)).

Thus again, the strict inequality in (2) follows.
So, an ESS x∗1 is “strictly fitter” than any other strategy, when
it is already dominant in the society. This is the sense in which
it is “evolutionarily stable”.



Does an ESS necessarily exist?
▶ As mentioned, Nash (1951) already proved that every

symmetric game has a symmetric NE (x∗, x∗).
▶ However, not every symmetric game has a ESS.

Example: Rock-paper-scissors: (0, 0) (1,−1) (−1, 1)
(−1, 1) (0, 0) (1,−1)
(1,−1) (−1, 1) (0, 0)


Obviously, s = (1/3, 1/3, 1/3) is the only NE. But it is
not an ESS: any strategy is a best reponse to s, including
the pure strategy s1 (rock). We have payoff
U(s1, s1) = 0 = U(s, s1), so s is not an ESS.

▶ But many games do have an ESS. For example, in the
Hawk-Dove game, (5/8, 3/8) is an ESS.

▶ Even when a game does have an ESS, it is not at all
obvious how to find one.



How hard is it to detect an ESS?
▶ It turns out that even deciding whether a 2-player

symmetric game has an ESS is hard. It is both NP-hard
and coNP-hard, and contained in ΣP

2 :
K. Etessami & A. Lochbihler, “The computational complexity
of Evolutionarily Stable Strategies”, International Journal of
Game Theory, vol. 31(1), pp. 93–113, 2008.
(And, more recently, it has been shown ΣP

2 -complete, see:
V. Conitzer, “The exact computational complexity of
Evolutionary Stable Strategies”, in Proceeding of Web and
Internet Economics (WINE), pages 96-108, 2013. )

▶ For simple 2 × 2 2-player symmetric games, there is a
simple way to detect whether there is an ESS, and if so to
compute one (described in the reading from Straffin).

▶ There is a huge literature on ESS and “Evolutionary
Game Theory” . See, e.g., the book: J. Weibull,
Evolutionary Game Theory, 1997.



Appendix: continuity, compactness, convexity
Definition For x , y ∈ Rn, dist(x , y) =

√∑n
i=1(x(i)− y(i))2

denotes the Euclidean distance between points x and y .
A function f : D ⊆ Rn → Rn is continuous at a point x ∈ D if
for all ϵ > 0, there exists δ > 0, such that for all y ∈ D: if
dist(x , y) < δ then dist(f (x), f (y)) < ϵ.
f is called continuous if it is continuous at every point x ∈ D.
Definition A set K ⊆ Rn is convex if for all x , y ∈ K and all
λ ∈ [0, 1], λx + (1 − λ)y ∈ K .
Fact A set K ⊆ Rn is compact if and only if it is closed and
bounded. (So, we need to define “closed” and “bounded”.)
Definition A set K ⊆ Rn is bounded iff there is some
non-negative integer M, such that K ⊆ [−M,M]n.
(i.e., K “fits inside” a finite n-dimensional box.)
Definition A set K ⊆ Rn is closed iff for all sequences
x0, x1, x2, . . ., where xi ∈ K for all i , such that x = limi→∞ xi for
some x ∈ Rn, then x ∈ K . (In other words, if a sequence of points
is in K then its limit (if it exists) must also be in K .)


