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2-person zero-sum games
A finite 2-person zero-sum (2p-zs) strategic game Γ, is a
strategic game where:
▶ For players i ∈ {1, 2}, the payoff functions

ui : S 7→ R are such that for all s = (s1, s2) ∈ S ,

u1(s) + u2(s) = 0

I.e., u1(s) = −u2(s).

ui(s1, s2) can conveniently be viewed as a m1 ×m2

payoff matrix Ai , where:

A1 =


u1(1, 1) . . . . . . u1(1,m2)

...
...

...
...

...
...

u1(m1, 1) . . . . . . u1(m1,m2)


Note, A2 = −A1. Thus we may assume only one function
u(s1, s2) is given, as one matrix, A = A1.



2-player zero-sum game matrix

Thus, a 2-player zero-sum game can be described by a single
m1 ×m2 matrix:

A =


a1,1 . . . . . . a1,m2

...
...

...
... ai ,j

...
...

...
...

am1,1 . . . . . . am1,m2


where ai ,j = u1(i , j).

Player 1 (the row player) wants to maximize u(i , j), whereas
Player 2 (the column player) wants to minimize it (i.e., to
maximize its negative).



review of matrix and vector notations

For any (n1 × n2)-matrix A we’ll either use ai ,j or (A)i ,j to
denote the entry in the i ’th row and j ’th column of A.

For (n1 × n2) matrices A and B , let
A ≥ B

denotes that for all i , j , ai ,j ≥ bi ,j .

Let
A > B

denotes that for all i , j , ai ,j > bi ,j .

For a matrix A, let A ≥ 0 denote that every entry is ≥ 0.
Likewise, let A > 0 mean every entry is > 0.



more review of matrices and vectors
Recall matrix multiplication: given (n1 × n2)-matrix A and
(n2 × n3)-matrix B , the product AB is an (n1 × n3)-matrix C ,
where

ci ,j =
n2∑
k=1

ai ,k · bk,j

Fact: matrix multiplication is “associative”: i.e.,

(AB)C = A(BC )

(Note: for the multiplications to be defined, the dimensions of
the matrices A, B , and C need to be “consistent”: (n1 × n2),
(n2 × n3), and (n3 × n4), respectively.)
Fact: For matrices A, B , C , of appropriate dimensions, if
A ≥ B , and C ≥ 0, then

AC ≥ BC , and likewise, CA ≥ CB .



more review of matrix and vector notation
For a (n1 × n2) matrix B , let BT denote the (n2 × n1)
transpose matrix, where (BT )i ,j := (B)j ,i .

We can view a column vector, y =


y(1)
...
...

y(m)

, as a
(m × 1)-matrix. Then, yT would be a (1×m)-matrix, i.e., a
row vector.
Typically, we think of “vectors” as column vectors. We’ll call a
length m vector an m-vector.
Multiplying a (n1 × n2)-matrix A by a n2-vector y is just a
special case of matrix multiplication:Ay is a n1-vector.
Likewise, yTA is a n2-row vector.
For a column (row) vector y , we use (y)j to denote its i ’th
entry.



A matrix view of zero-sum games
Suppose we have a 2p-zs game given by a (m1 ×m2)-matrix,
A.
Suppose Player 1 chooses a mixed strategy x1, and Player 2
chooses mixed strategy x2 (assume x1 and x2 are given by
column vectors).

xT1 Ax2 =
m1∑
i=1

m2∑
j=1

(x1(i) · x2(j)) · ai ,j

But note that (x1(i) · x2(j)) is precisely the probability of the
pure combination s = (i , j). Thus, for the mixed profile
x = (x1, x2)

xT1 Ax2 = U1(x) = −U2(x)

where U1(x) is the expected payoff (which Player 1 is trying to
maximize, and Player 2 is trying to minimize).



“minmaximizing” strategies
Suppose Player 1 chooses a mixed strategy x∗1 ∈ X1, by trying
to maximize the “worst that can happen”. The worst that can
happen would be for Player 2 to choose x2 which minimizes
(x∗1 )

TAx2.
Definition: x∗1 ∈ X1 is a minmaximizer for Player 1 if

min
x2∈X2

(x∗1 )
TAx2 = max

x1∈X1

min
x2∈X2

(x1)
TAx2

Similarly, x∗2 ∈ X2 is a maxminimizer for Player 2 if

max
x1∈X1

(x1)
TAx∗2 = min

x2∈X2

max
x1∈X1

xT1 Ax2

Note that
min
x2∈X2

(x∗1 )
TAx2 ≤ (x∗1 )

TAx∗2 ≤ max
x1∈X1

xT1 Ax
∗
2

Amazingly, von Neumann (1928) showed equality holds!



The Minimax Theorem
Theorem(von Neumann) Let a 2p-zs game Γ be given by an
(m1 ×m2)-matrix A of real numbers. There exists a
unique value v ∗ ∈ R, such that there exists x∗ = (x∗1 , x

∗
2 ) ∈ X

such that

1. ((x∗1 )
TA)j ≥ v ∗, for j = 1, . . . ,m2.

2. (Ax∗2 )j ≤ v ∗, for j = 1, . . . ,m1.

3. And (thus) v ∗ = (x∗1 )
TAx∗2 and

max
x1∈X1

min
x2∈X2

(x1)
TAx2 = v ∗ = min

x2∈X2

max
x1∈X1

xT1 Ax2

4. In fact, the above conditions all hold precisely when
x∗ = (x∗1 , x

∗
2 ) is any Nash Equilibrium.

Equivalently, they hold precisely when x∗1 is any
minmaximizer and x∗2 is any maxminimizer.



some remarks
Note:
(1.) says x∗1 guarantees Player 1 at least expected profit v ∗,
and

(2.) says x∗2 guarantees Player 2 at most expected “loss” v ∗.

We call any such x∗ = (x∗1 , x
∗
2 ) a minimax profile.

We call the unique v ∗ the minimax value of game Γ.

It is obvious that the maximum profit that Player 1 can
guarantee for itself should be ≤ the minimum loss that Player
2 can guarantee for itself, i.e., that

max
x1∈X1

min
x2∈X2

(x1)
TAx2 ≤ min

x2∈X2

max
x1∈X1

xT1 Ax2

What is not obvious at all is why these two values should be
the same!



Proof of the Minimax Theorem
The Minimax Theorem follows directly from Nash’s Theorem
(but historically, it predates Nash).
Proof: Let x∗ = (x∗1 , x

∗
2 ) ∈ X be a NE of the 2-player

zero-sum game Γ, with matrix A.

Let v ∗ := (x∗1 )
TAx∗2 = U1(x

∗) = −U2(x
∗).

Since x∗1 and x∗2 are “best responses” to each other, we know
that for i ∈ {1, 2}

Ui(x
∗
−i ; πi ,j) ≤ Ui(x

∗).
But
1. U1(x

∗
−1; π1,j) = (Ax∗2 )j . Thus,

(Ax∗2 )j ≤ v ∗ = U1(x
∗)

for all j = 1, . . . ,m1.
2. U2(x

∗
−2; π2,j) = −((x∗1 )

TA)j . Thus,

((x∗1 )
TA)j ≥ v ∗ = −U2(x

∗)

for all j = 1, . . . ,m2.



3. maxx1∈X1(x1)
TAx∗2 ≤ v ∗ because (x1)

TAx∗2 is a “weighted
average” of (Ax∗2 )j ’s.
Similarly, v ∗ ≤ minx2∈X2(x

∗
1 )

TAx2 because (x∗1 )
TAx2 is a

“weighted average” of ((x∗1 )
TA)j ’s. Thus

max
x1∈X1

(x1)
TAx∗2 ≤ v ∗ ≤ min

x2∈X2

(x∗1 )
TAx2

We earlier noted the opposite inequalities, so,

min
x2∈X2

max
x1∈X1

xT1 Ax2 = v ∗ = max
x1∈X1

min
x2∈X2

(x1)
TAx2

4. We didn’t assume anything about the particular Nash
Equilibrium we chose. So, for every NE, x∗, letting
v ′ = (x∗1 )

TAx∗2 ,

max
x1∈X1

min
x2∈X2

(x1)
TAx2 = v ′ = v ∗ = min

x2∈X2

max
x1∈X1

xT1 Ax2

Moreover, if x∗ = (x∗1 , x
∗
2 ) satisfies conditions (1.) and

(2.) for some v ∗, then x∗ must be a Nash Equilibrium.

Q.E.D. (Minimax Theorem)



remarks and food for thought
▶ Thus, for 2-player zero-sum games, Nash Equilibria and

Minimax profiles are the same thing.

▶ Let us note here
Useful Corollary for Minimax: In a minimax profile
x∗ = (x∗1 , x

∗
2 ),

1. if x∗2 (j) > 0 then ((x∗1 )
TA)j = (x∗1 )

TAx∗2 = v∗.
2. if x∗1 (j) > 0 then (Ax∗2 )j = (x∗1 )

TAx∗2 = v∗.

This is an immediate consequence of the Useful Corollary
for Nash Equilibria.

▶ If you were playing a 2-player zero-sum game (say, as
player 1) would you always play a minmaximizer strategy?

▶ What if you were convinced your opponent is an idiot?

▶ Notice, we have no clue yet how to compute the minimax
value and a minimax profile.
That is about to change.



minimax as an optimization problem

Consider the following “optimization problem”:
Maximize v
Subject to constraints:
(xT1 A)j ≥ v for j = 1, . . . ,m2,
x1(1) + . . .+ x1(m1) = 1,
x1(j) ≥ 0 for j = 1, . . . ,m1

It follows from the minimax theorem that an optimal solution
(x∗1 , v

∗) would give precisely the minimax value v ∗, and a
minmaximizer x∗1 for Player 1.
We are optimizing a “linear objective”,
under “linear constraints” (or “linear inequalities”).
That’s what Linear Programming is.
Fortunately, we have good algorithms for it.
Next time, we start Linear Programming.


