
Algorithmic Game Theory

and Applications

Lecture 5:

Introduction to

Linear Programming

Kousha Etessami

“real world example”: the diet problem
▶ You are a fastidious eater. You want to make sure that

every day you get enough of each vitamin: vitamin 1,
vitamin 2,...., vitamin m.

▶ You are also frugal, and want to spend as little as
possible.

▶ There are n foods available to eat: food 1, food 2,,
food n.

▶ Each unit of food j has ai ,j units of vitamin i .

▶ Each unit of food j costs cj .

▶ Your daily need for vitamin i is bi units.

▶ Assume you can buy each food in fractional amounts.
(This makes your life much easier.)

▶ How much of each food would you eat per day in order to
have all your daily needs of vitamins, while minimizing
your cost?

A Linear Programming Example
Find (x , y) ∈ R2 so as to: Maximize 2x + y
Subject to conditions (“constraints”): x + y ≤ 6;

x ≤ 5;
y ≤ 4;
x , y ≥ 0;

x

y

(2,4)

(5,1)

2 x + y = 11
2 x + y = 8

x + y <= 6

y <= 4

x <= 5

Much of this simple “geometric intuition” generalizes nicely to
higher dimensions. (But be very careful! Things get
complicated very quickly!)

The General Linear Program

Definition: A Linear Programming or Linear Optimization
problem instance (f , Opt,C), consists of:

1. A linear objective function f : Rn 7→ R, given by:
f (x1, . . . , xn) = c1 x1 + c2 x2 + . . .+ cn xn + d
where we assume the coefficients ci and constant d are
rational numbers.

2. An optimization criterion: Opt ∈ {Maximize, Minimize}.
3. A set (or “system”) C (x1, . . . , xn) of m linear constraints,

or linear inequalities/equalities,
Ci(x1, . . . , xn), i = 1, . . . ,m, where each Ci(x) has form:

ai ,1 x1 + ai ,2 x2 + . . .+ ai ,n xn ∆ bi

where ∆ ∈ {≤,≥,=}, and where ai ,j ’s and bi ’s are
rational numbers.

What does it mean to solve an LP?
For a constraint Ci(x1, . . . , xn), we say vector
v = (v1, . . . , vn) ∈ Rn satisfies Ci(x) if, plugging in v for the
variables x = (x1, . . . , xn), the constraint Ci(v) holds true.

For example, (3, 6) satisfies −x1 + x2 ≤ 7.

v ∈ Rn is called a solution to a system C (x), if v satisfies
every constraint Ci ∈ C . I.e., C1(v) ∧ . . . ∧ Cm(v) is true.

Let K (C) ⊆ Rn denote the set of all solutions to the system
C (x). We say C is feasible if K (C) is not empty.
An optimal solution, for Opt = Maximize, is some x∗ ∈ K (C)
such that:

f (x∗) = max
x∈K(C)

f (x)

(respectively, f (x∗) = minx∈K(C) f (x), for Opt = Minimize)).

Given an LP problem (f , Opt,C), our goal in principle is to
find an “optimal solution”.

Oops!! There may not be an
optimal solution!

What does it mean to solve an LP?
For a constraint Ci(x1, . . . , xn), we say vector
v = (v1, . . . , vn) ∈ Rn satisfies Ci(x) if, plugging in v for the
variables x = (x1, . . . , xn), the constraint Ci(v) holds true.

For example, (3, 6) satisfies −x1 + x2 ≤ 7.

v ∈ Rn is called a solution to a system C (x), if v satisfies
every constraint Ci ∈ C . I.e., C1(v) ∧ . . . ∧ Cm(v) is true.

Let K (C) ⊆ Rn denote the set of all solutions to the system
C (x). We say C is feasible if K (C) is not empty.
An optimal solution, for Opt = Maximize, is some x∗ ∈ K (C)
such that:

f (x∗) = max
x∈K(C)

f (x)

(respectively, f (x∗) = minx∈K(C) f (x), for Opt = Minimize)).

Given an LP problem (f , Opt,C), our goal in principle is to
find an “optimal solution”. Oops!! There may not be an
optimal solution!

Things that can go wrong
Two things can go wrong when looking for an optimal solution:

1. There may be no solutions at all!
I.e., C is not feasible, i.e., K (C) is empty. Consider:

Maximize x
Subject to: x ≤ 3 and x ≥ 5

2. max /minx∈K(C) f (x) may not exist (!), because f (x) is
unbounded above/below in K (C). Consider:

Maximize x
Subject to: x ≥ 5

So, we have to revise our goals to handle these cases.

Note: If we allowed strict inequalities, e.g., x < 5, there
would have been yet another problem:

Maximize x
Subject to: x < 5

The LP Problem Statement
Given an LP problem instance (f , Opt,C) as input, output one
of the following three:
1. “The problem is Infeasible.”
2. “The problem is Feasible But Unbounded.”
3. “An Optimal Feasible Solution (OFS) exists.

One such optimal solution is x∗ ∈ Rn.
The optimal objective value is f (x∗) ∈ R.”

Oops!! It seems yet another thing could go wrong: What if
every optimal solution x∗ ∈ Rn is irrational?
How can we “output” irrational numbers?
Likewise, what if the Opt value f (x∗) is irrational?

Fact: This problem never arises. The above three answers
cover all possibilities, and furthermore, as long as all our
coefficients and constants are rational, if an OFS exists, a
rational OFS x∗ exists, and the optimal value f (x∗) is also
rational. (We will learn why later.)

Simplified forms for LP problems
1. In principle, we need only consider Maximization, because:

min
x∈K

f (x) = −max
x∈K

−f (x)

(either side is unbounded if and only if both are.)

2. We only need an objective function f (x1, . . . , xn) = xi , for
some xi , because we can:

Introduce new variable x0. Add new constraint f (x) = x0
to constraints C . Make the new objective “Optimize x0”.

3. Don’t need “=” constraints: α = β ⇔ (α ≤ β ∧ α ≥ β).

4. Don’t need “α ≥ b”, where b ∈ R: α ≥ b ⇔ −α ≤ −b.

5. We can constrain every variable xi to be xi ≥ 0:
Introduce two variables x+i , x

−
i for each variable xi .

Replace each occurence of xi by (x+i − x−i), and add the
constraints x+i ≥ 0, x−i ≥ 0.
(N.B. can’t do both (2.) and (5.) together.)

A lovely but terribly inefficient algorithm for LP
Input: LP instance (x0, Opt,C (x0, x1, . . . , xn)).
1. For i = n downto 1

a. Rewrite each constraint involving xi as α ≤ xi , or as
xi ≤ β. (One of the two is possible.) Let these be:
α1 ≤ xi ,. . ., αk ≤ xi ; xi ≤ β1,. . ., xi ≤ βr
(Retain these constraints, Hi , for later.)

b. Remove Hi , i.e., all constraints involving xi . Replace
with constraints: {αj ≤ βl | j = 1, . . . , k ,&l = 1, . . . , r}.

2. Only x0 (or no variable) remains. All constraints have the
forms aj ≤ x0, x0 ≤ bl , or aj ≤ bl , where aj ’s and bl ’s are
constants. It’s easy to check “feasibility” &
“boundedness” for such a one(or zero)-variable LP, and
to find an optimal x∗0 if one exists.

3. Once you have x∗0 , plug it into H1. Solve for x∗1 .
Then use x∗0 , x

∗
1 in H2 to solve for x∗2 , . . . , use

x∗0 , . . . , x
∗
i−1 in Hi to solve for x∗i then

x∗ = (x∗0 , . . . , x
∗
n) is an optimal feasible solution.

remarks on the lovely algorithm
▶ This algorithm was first discovered by Fourier (1826).

Rediscovered in 1900’s, by Motzkin (1936) and others.

▶ It is called Fourier-Motzkin Elimination, and can be
viewed as a generalization of Gaussian Elimination, used
for solving systems of linear equalities.

▶ Why is Fourier-Motzkin so inefficient? In the worst case,
if every variable xi is involved in every constraint, with
half of them in each “direction”, then each “for loop”
interation roughly squares the number of constraints. So,

toward the end we could have ∼ m2n

2n
constraints!

▶ Let’s recall Gaussian Elimination (GE). It is much nicer
and does not suffer from this explosion.

▶ In 1947, Dantzig invented the celebrated Simplex
Algorithm for LP. It can be viewed as a much more
refined generalization of GE. Next time, Simplex!

more remarks

Immediate Corollaries of Fourier-Motzkin:

Corollary 1: The three possible “answers” to an LP problem
do cover all possibilities.
(In particular, unlike “Maximize x ; x < 5”, If an LP has a
“Supremum” it has a “Maximum”.)

Corollary 2: If an LP has an OFS, then it has a rational OFS,
x∗, and f (x∗) is also rational.
Proof: We used only addition, multiplication, & division by
rationals to arrive at the solution.

further remarks

Although Fourier-Motzkin is bad in the worst case, it can still
be quite useful. It can be used to remove redundant variables
and constraints1. And its worst-case behavior may in many
cases not arise in practice.

Generalizations of Fourier-Motzkin are used in some tools
(e.g., [Pugh,’92]) for solving “Integer Linear Programming”,
where we seek an optimal solution x∗ not in Rn, but in Zn.
ILP is a much harder problem! (NP-complete.)

For ordinary LP however, Fourier-Motzkin can’t compete with
Simplex.

1When a variable xi is only involved in inequalities, all in one
“direction”, those inequality constraints are all “redundant” because they
can always be satisfied by setting xi to a sufficiently high/low value.

▶ Food for Thought: Think about what kinds of clever
heuristics and hacks you could use during Fourier-Motzkin
to keep the number of constraints as small as possible.
E.g., In what order would you try to eliminate variables?
(Clearly, any order is fine, as long as x0 is last.)

