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Recall our example
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Note: starting at (0, 0), we can find the optimal vertex (5, 1),
by repeatedly moving from a vertex to a neighboring vertex
(crossing an “edge”) that improves the value of the objective.

We don’t seem to get “stuck” in any “locally optimal” vertex.
That’s the geometric idea of simplex!
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geometric idea of simplex
Input: Given (f , Opt,C ) and a start “vertex” x ∈ K (C ) ⊆ Rn.

(Never mind, for now, that we have no idea how to find any
x ∈ K (C ) -or even if C is Feasible!- let alone a “vertex”.)

While (x has a “neighbor vertex”, x ′, with f (x ′) > f (x))
▶ Pick such a neighbor x ′. Let x := x ′.
▶ (If the “neighbor” is at “infinity”, Output: “Unbounded”.)

Output: x∗ := x is optimal solution, with optimal value f (x∗).

Question: Why should this work? Why don’t we get “stuck”
in some “local optimum”?

Key reason: The region K (C ) is convex. (Recall: K is convex
iff for all x , y ∈ K , λx + (1− λ)y ∈ K , for all λ ∈ [0, 1].)

Fact: On a convex region, a “local optimum” of a linear
objective is always a “global optimum”.

Ok. The geometry sounds nice and simple. But realizing it
algebraically is not a trivial matter!
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LP’s in “Primal Form”

Using the simplification rules from the last lecture, we can
convert any LP into the following form:

Maximize c1 x1 + c2 x2 + . . .+ cn xn + d
Subject to:
a1,1 x1 + a1,2 x2 + . . .+ a1,n xn ≤ b1
a2,1 x1 + a2,2 x2 + . . .+ a2,n xn ≤ b2
. . . . . .
. . . . . .
am,1 x1 + am,2 x2 + . . .+ am,n xn ≤ bm

x1, . . . , xn ≥ 0

Side comment: Carrying along the constant d in the objective
f (x) seems silly: it doesn’t affect the optimality of a solution.
(It only shifts the value of a solution by d .) We keep the
constant for convenience, to become apparent later.



slack variables
By adding a “slack” variable yi to each inequality, we get an
“equivalent” LP (explain), with only equalities (& non-neg):

Maximize c1 x1 + c2 x2 + . . .+ cn xn + d
Subject to:
a1,1 x1 + a1,2 x2 + . . .+ a1,n xn + y1 = b1
a2,1 x1 + a2,2 x2 + . . .+ a2,n xn + y2 = b2
. . . . . .
am,1 x1 + am,2 x2 + . . .+ am,n xn + ym = bm
x1, . . . , xn ≥ 0; y1, . . . , ym ≥ 0

This new LP has some particularly nice properties:

1. Every equality constraint has at least one variable with
coefficient 1 that doesn’t appear in any other equality.

2. Picking one such variable, yi , for each equality, we obtain
a set of m variables B = {y1, . . . , ym} called a Basis.

3. Objective f (x) involves only non-Basis variables.

Let’s call an LP in this form a “dictionary”.
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Basic Feasible Solutions
Rewrite our dictionary (renaming “yi”, “xn+i”) as:

Maximize c1 x1 + c2 x2 + . . .+ cn xn + d
Subject to:
xn+1 = b1 − a1,1 x1 − a1,2 x2 − . . .− a1,n xn
xn+2 = b2 − a2,1 x1 − a2,2 x2 − . . .− a2,n xn
. . . . . .
xn+m = bm − am,1 x1 − am,2 x2 − . . .− am,n xn
x1, . . . , xn+m ≥ 0

Suppose, somehow, bi ≥ 0 for all i = 1, . . . ,m. Then we have
a “feasible dictionary” and a feasible solution for it, namely, let
xn+i := bi , for i = 1, . . . ,m, and let xj := 0, for j = 1, . . . , n.
The objective value is then f (0) = d .
Call this a basic feasible solution(BFS),with basis B .
Geometry: A BFS corresponds to a “vertex”. (But different
Bases B may yield the same BFS!)

Question: How do we move from one BFS with basis B to a
“neighboring” BFS with basis B ′? Answer: Pivoting!
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Pivoting

Suppose our current dictionary basis (the variables on the left)
is B = {xi1 , . . . , xim}, with xir the variable on the left of
constraint Cr .
The following pivoting procedure moves us from basis B to
basis B ′ := (B \ {xir}) ∪ {xj}.
Pivoting to add xj and remove xir from basis B :

1. Assuming Cr involves xj , rewrite Cr as xj = α.

2. Substitute α for xj in other constraints Cl , obtaining C ′
l .

3. The new constraints C ′, have a new basis:
B ′ := (B \ {xir}) ∪ {xj}.

4. Also substitute α for xj in f (x), so that f (x) again only
depends on variables not in the new basis B ′.

This new basis B ′ is a “possible neighbor” of B .
However, not every such basis B ′ is eligible!



sanity checks for pivoting
To check eligibility of a pivot, we have to make sure:
1. The new constants b′i remain ≥ 0, so we retain a

“feasible dictionary”, and thus B ′ yields a BFS.

2. The new BFS must improve, or at least
must not decrease, the value d ′ = f (0) of the new
objective function. (Recall, all non-basic variables are set
to 0 in a BFS, thus f (BFS) = f (0).)

3. We should also check for the following situations:
(a) Suppose all variables in f (x) have negative
coefficients. Then any increase from 0 in these variables
will decrease the objective. We are thus at an optimal
BFS x∗. Output: Opt-BFS: x∗ & f (x∗) = f (0) = d ′.

(b) Suppose a variable xj in f (x) has coefficient cj > 0,
and the coefficient of xj in every constraint Cr is ≥ 0.
Then we can increase xj , and objective, to “infinity”
without violating constraints. So, Output: “Feasible but
Unbounded”.
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finding and choosing eligible pivots

▶ In principle, we could exhaustively check the sanity
conditions for eligibility of all potential pairs of entering
and leaving variables. There are at most (n ∗m)
candidates.

▶ But, there are much more efficient ways to choose pivots,
by inspection of the coefficients in the dictionary.

▶ We can also efficiently choose pivots according to lots of
additional criteria, or pivoting rules, such as, e.g., “most
improvement in objective value”, etc.

▶ There are many such “rules”, and it isn’t clear a priori
what is “best”.



example of a simplex pivoting step
Maximize 2x1 + 3 x2 + 4x3 + 8
Subject to:
x4 = 3− x1 − 3 x2 − x3
x5 = 4− 2 x1 + x2 − 2 x3
x6 = 2− 2 x1 − 4 x2 + x3
x1, . . . , x6 ≥ 0;

the initial BFS is: (0, 0, 0, 3, 4, 2)
Suppose we next choose to move x2 into the basis.

▶ Constraint x4 = 3− . . .− 3x2 − . . . means we can at most
increase x2 to = 1 while maintaining a feasible dictionary.

▶ On the other hand, constraint x6 = 2− . . .− 4x2 + . . .,
means we can at most increase x2 to = 1/2.

▶ The latter constraint is “tightest”. So, once x2 is chosen
to enter the basis, the unique variable that can leave the
basis while maintaining feasiblility is x6.

▶ So we rewrite constraint x6 = 2− 2x1 − 4x2 + x3 as:
(**) x2 =

1
2
− 1

2
x1 +

1
4
x3 − 1

4
x6, and rewrite the objective

and other constraints, by replacing x2 with RHS of (**).
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The Simplex Algorithm

Dantzig’s Simplex algorithm can be described as follows:
Input: a feasible dictionary;

Repeat

1. Check if we are at an optimal solution, and if
so, Halt and output the solution.

2. Check if we have an “infinity” neighbor, and if
so Halt and output “Unbounded”.

3. Otherwise, choose an eligible pivot pair of
variables, and Pivot!

Fact If this halts the output is correct: an output solution is
an optimal solution of the LP.
Oops! We could cycle back to the same basis for ever, never
strictly improving by pivoting.
There are several ways to address this problem......



how to prevent cycling
Several Solutions:

1. Carefully choose rules for variable pairs to pivot at, in a
way that forces cycling to never happen.
Fact: This can be done.
(For example, use “Bland’s rule”: For all eligible pivot
pairs (xi , xj), where xi is being added the basis and xj is
being removed from it, choose the pair such that, first, i
is as small as possible, and second, j is as small as
possible.)

2. Choose randomly among eligible pivots.
With probability 1, you’ll eventually get out and to an
optimal BFS.

3. “Perturb” the constraints slighty to make the LP
“non-degenerate”. (More rigorously, implement this
using, e.g., the “lexicographic method”.)



the geometry revisited
▶ Moving to a “neighboring” basis by pivoting roughly

corresponds to moving to a neighboring “vertex”.
However, not literally true because several Bases can
correspond to same BFS, and thus to same “vertex”.

We may not have any neighboring bases that strictly
improve the objective, and yet still not be optimal,
because all neighoring bases B ′ describe the same BFS
“from a different point of view”.

▶ pivoting rules can be designed so we never return to the
same “point of view” twice.

▶ choosing pivots randomly guarantees that we eventually
get out.

▶ properly “perturbing” the constraints makes sure every
BFS corresponds to a unique basis (i.e., we are
non-degenerate), and thus bases and “vertices” are in 1-1
correspondence.



Hold on! What about finding an initial BFS?

▶ So far, we have cheated: we have assumed we start with
an initial “feasible dictionary”, and thus have an initial
BFS.

▶ Recall, the LP may not even be feasible!

▶ Luckily, it turns out, it is as easy (using Simplex) to find
whether a feasible solution exists (and if so to find a BFS)
as it is to find the optimal BFS given an initial BFS.....



checking feasibility via simplex

Consider the following new LP: Maximize −x0
Subject to:
a1,1 x1 + a1,2 x2 + . . .+ a1,n xn − x0 ≤ b1
a2,1 x1 + a2,2 x2 + . . .+ a2,n xn − x0 ≤ b2
. . . . . .
am,1 x1 + am,2 x2 + . . .+ am,n xn − x0 ≤ bm

x0, x1, . . . , xn ≥ 0

▶ This LP is feasible: let x0 = −min{b1, . . . , bm, 0}, xj = 0,
for j = 1, . . . , n. We can also get a feasible dictionary,
and thus initial BFS, for it by adding slack variables.

▶ Key point: the original LP is feasible if and only if in an
optimal solution to the new LP, x∗0 = 0.

▶ It also turns out, it is easy to derive a BFS for the original
LP from an optimal BFS for this new LP.



how efficient is simplex?

▶ Each pivoting iteration can be performed in O(mn)
arithmetic operations.
Also, it can be shown that the coefficients never get “too
large” (they stay polynomial-sized), as long as rational
coefficients are kept in reduced form (e.g., removing
common factors from numerator and denominator).
So, each pivot can be done in “polynomial time”.

▶ How many pivots are required to get to the optimal
solution? Unfortunately, it can be exponentially many!

▶ In fact, for most “pivoting rules” known, there exist worst
case examples that force exponentially many iterations.
(E.g., Klee-Minty (1972).)

▶ Fortunately, simplex tends to be very efficient in practice:
requiring O(m) pivots on typical examples.



more on theoretical efficiency
▶ It is an open problem whether there exists a pivoting rule

that achieves polynomially many pivots on all LPs.

▶ A randomized pivoting rule is known that requires mO(
√
n)

expected pivots [Kalai’92], [Matousek-Sharir-Welzl’92].
▶ Is there, in every LP, a polynomial-length “path via

edges” from every vertex to every other? Without this,
there can’t be any polynomial pivoting rule.
Hirsch Conjecture:“diameter ≤ m − n”. Disproved [Santos’10].
Best known bound is ≤ mO(log n) [Kalai-Kleitman’92].

▶ Breakthrough: [Khachian’79] proved the LP problem does
have a polynomial time algorithm, using a completely
different approach: The “Ellipsoid Algorithm”. Ellipsoid is
theoretically very important, but not practical.

▶ Breakthrough: [Karmarkar’84] gave a completely different
P-time algorithm, using “the interior-point method”. It is
competitive with simplex in many cases.
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final remarks and food for thought
▶ Why is the Simplex algorithm so fast in practice?

Some explanation is offered by [Borgwardt’77]’s “average
case” analysis of Simplex. More convincing explanation is
offered by [Spielman-Teng’2001]’s “smoothed analysis” of
Simplex (not “light reading”).

▶ Ok. Enough about Simplex. So we now have an efficient
algorithm for, among other things, finding minimax
solutions to 2-player zero-sum games.

▶ Next time, we will learn about the very important concept
of Linear Programming Duality.
LP Duality is closely related to the Minimax theorem, but
it has far reaching consequences in many subjects.

▶ Food for thought: Suppose you have a solution to an
LP in Primal Form, and you want to convince someone it
is optimal. How would you do it?


