Compiling Techniques
Lecture 10: Type Analysis



Types and Type System
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certain program behaviors by classifying phrases according to the kinds of
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That’s what we call Types



ChocoPy Type System

- ChocoPy is a statically typed language

- We verify that programs are well-typed by analyzing the program’s syntax without executing it

- ChocoPYy is a strongly typed language

- Programs with type errors are rejected and there are no implicit type conversions

- ChocoPy has subtyping
- Types form a hierarchy and a value of a subtype can safely be used in a context where a
value of the supertype is expected



Types of ChocoPy

- The grammar of ChocoPy contains type := type_name | [ type “1°
the syntax of the following types: SypeiEne o= At || beal || sir | ebject

- int - representing integer values

- bool - representing the two values True and False

- str - representing strings

- object - the top type, i.e., every value has this type

- [T] - representing a list with elements of type T, where T is itself a type

- ChocoPy defines three more types that cannot be written by the user:
- <Empty> - representing an empty list
- <None> - representing the value None
- 1 -the bottom type, i.e., the type that has no value



Type Hierarchy of ChocoPy

- The types form a hierarchy:

object
|
I I I I I I I

int  bool str [int] .. [[bool]] <Empty> <None>
| | | [ [ [ |

- The type hierarchy is precisely defining by a subtyping relationship (<), where:

- T=T for all types T
- T < object foralltypesT
- 1L =T for all types T

If none of the three cases above apply, then the types are not related by subtyping,
for example: [int] and [bool] are not related by subtyping



Type Checking
- The type checking process verifies and enforces the type system

- The type system is defined by a set of formal typing rules that describe under
what conditions a syntactic construct is well-typed (“has a valid type”)

- To perform type checking, we process a syntactically well-formed program
and apply the typing rules to check if we can justify that every definition,
statement, and expression is well-typed



Typing rules are inference rules

A typing rule is a form of a logical inference rule

-  We write a typing rule like this:
yping [ NAME ]

: 0 : T
- Each typing rule contains: "€

- a [NAME],
- zero, one, or multiple premises above the line,
- a conclusion below the line.

- The rule states, that if the premises are true, then the conclusion is true as well.
In other words: to check the conclusion, we must check that all premises are true
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Typing Judgement

0 F e : T Iisatypingjudgement, where the turnstile symbol (-) separates
the typing environment on the left from the proposition on the right.

This judgement should be read as:

"In the type environment O the expression e is well typed and has type T"

Why do we need a typing environment?
Why can’t we just say: “The expression e is well typed and has type T”?
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Typing Environment
- Consider: + x + 4 : int Is this a valid typing judgement?

- We cannot say without knowing the type of x!

If x has type int, then the judgement seems valid
If x has not the type int, then the judgement seems wrong

- The typing environment records the type of all variables and functions that are
in scope when type checking a definition, statement, or expression

- Given a typing environment, we can always
conclude if a typing judgement is valid:

{x: int} - x + 4 : int
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Typing Environment of ChocoPy

- For type checking ChocoPy, we use a local environment O that contains:

The types of all variables in scope
We write 0(v) = T to indicate that variable v is in the local environment and has type T

Information about all functions in scope
Wewrite O(F) = {T, x . x T > To5 Xay wy X5 Va2 T'yy oy v 2 T' }
to indicate that function f is in the local environment and
- has a function type with
- Ty, ..., T the types of the function parameters
- To the function return type
- has function parameters with names xi, ..., x_
- has identifiers and types v:: T'y, ..., v T'm of variables declared in the body of £

- We also record the return type R of the current function in the environment
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First ChocoPy Typing Rules

[BOOL-FALSE]

0, R + False : bool
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First ChocoPy Typing Rules

0, R+ e, : bool
0, R+ e, : bool
[AND]

O, R+ e, and e, : bool

“If e, has type bool in the type environment 0 and R, and
if ez has type bool in the same type environment O and R,
then we can conclude that
in the same type environment O and R
the expression e, and e, is well typed and has type bool”
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Example of Type Checking

0, R + False and (True and False) : bool

[?]

False : bool

[BOOL-FALSE]

True : bool

F e, : bool
F e, : bool

[BOOL-TRUE]

e, and e,

[AND]

: bool
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Example of Type Checking

[BOOL-FALSE]
0, R + False : bool

[BOOL-TRUE]
0, R+ True : bool

0, R + False : bool
O, R+ e, : bool

0, R + True and False : bool 0, R+ e, : bool

0, R + False and (True and False) : bool 0, R+ e, and e, : bool




Example of Type Checking

0, R - False :

bool

0, R - True and False

: bool

0, R + False and (True and False) : bool

[AND]

[BOOL-FALSE]

0, R + False : bool
[BOOL-TRUE]
0, R+ True : bool
O, R+ e, : bool
O, R+ e, : bool
[AND]
O, R+ e, and e, : bool
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Example of Type Checking

[BOOL-FALSE]
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0, R + False : bool
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[AND]

[AND]
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Example of Type Checking
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Example of Type Checking

0, R + False :

bool

[BOOL-FALSE]

0, R - True

[BOOL-TRUE]
: bool

[BOOL-FALSE]
0, R + False : bool

0, R F True

[AND]

and False : bool

[AND]

0, R + False and (True and False) : bool
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