Compiling Techniques
Lecture 10: Type Analysis

Types and Type System

A type system is a tractable syntactic method for proving the absence of
certain program behaviors by classifying phrases according to the kinds of

values they compute.
Benjamin Pierce Types and Programming Languages

Types and Type System

We operate on the AST

A type system is a tractable syntactic method for proving the absence of
certain program behaviors by classifying phrases according to the kinds of

values they compute.
Benjamin Pierce Types and Programming Languages

Types and Type System

We operate on the AST Detecting of Semantic Errors

A type system is a tractable syntactic method for proving the absence of
certain program behaviors by classifying phrases according to the kinds of

values they compute.
Benjamin Pierce Types and Programming Languages

Types and Type System

We operate on the AST Detecting of Semantic Errors

A type system is a tractable syntactic method for proving the absence of
certain program behaviors by classifying phrases according to the kinds of

values they compute.
Benjamin Pierce Types and Programming Languages

That’s what we call Types

ChocoPy Type System

- ChocoPy is a statically typed language

- We verify that programs are well-typed by analyzing the program’s syntax without executing it

- ChocoPYy is a strongly typed language

- Programs with type errors are rejected and there are no implicit type conversions

- ChocoPy has subtyping
- Types form a hierarchy and a value of a subtype can safely be used in a context where a
value of the supertype is expected

Types of ChocoPy

- The grammar of ChocoPy contains type := type_name | [type “1°
the syntax of the following types: SypeiEne o= At || beal || sir | ebject

- int - representing integer values

- bool - representing the two values True and False

- str - representing strings

- object - the top type, i.e., every value has this type

- [T] - representing a list with elements of type T, where T is itself a type

- ChocoPy defines three more types that cannot be written by the user:
- <Empty> - representing an empty list
- <None> - representing the value None
- 1 -the bottom type, i.e., the type that has no value

Type Hierarchy of ChocoPy

- The types form a hierarchy:

object
|
I I I I I I I

int bool str [int] .. [[bool]] <Empty> <None>
| | | [[[|

- The type hierarchy is precisely defining by a subtyping relationship (<), where:

- T=T for all types T
- T < object foralltypesT
- 1L =T for all types T

If none of the three cases above apply, then the types are not related by subtyping,
for example: [int] and [bool] are not related by subtyping

Type Checking
- The type checking process verifies and enforces the type system

- The type system is defined by a set of formal typing rules that describe under
what conditions a syntactic construct is well-typed (“has a valid type”)

- To perform type checking, we process a syntactically well-formed program
and apply the typing rules to check if we can justify that every definition,
statement, and expression is well-typed

Typing rules are inference rules

A typing rule is a form of a logical inference rule

- We write a typing rule like this:
yping [NAME]

: 0 : T
- Each typing rule contains: "€

- a [NAME],
- zero, one, or multiple premises above the line,
- a conclusion below the line.

- The rule states, that if the premises are true, then the conclusion is true as well.
In other words: to check the conclusion, we must check that all premises are true

10

Typing Judgement

0 F e : T Iisatypingjudgement, where the turnstile symbol (-) separates
the typing environment on the left from the proposition on the right.

This judgement should be read as:

"In the type environment O the expression e is well typed and has type T"

Why do we need a typing environment?
Why can’t we just say: “The expression e is well typed and has type T”?

11

Typing Environment
- Consider: + x + 4 : int Is this a valid typing judgement?

- We cannot say without knowing the type of x!

If x has type int, then the judgement seems valid
If x has not the type int, then the judgement seems wrong

- The typing environment records the type of all variables and functions that are
in scope when type checking a definition, statement, or expression

- Given a typing environment, we can always
conclude if a typing judgement is valid:

{x: int} - x + 4 : int

12

Typing Environment of ChocoPy

- For type checking ChocoPy, we use a local environment O that contains:

The types of all variables in scope
We write 0(v) = T to indicate that variable v is in the local environment and has type T

Information about all functions in scope
Wewrite O(F) = {T, x . x T > To5 Xay wy X5 Va2 T'yy oy v 2 T' }
to indicate that function f is in the local environment and
- has a function type with
- Ty, ..., T the types of the function parameters
- To the function return type
- has function parameters with names xi, ..., x_
- has identifiers and types v:: T'y, ..., v T'm of variables declared in the body of £

- We also record the return type R of the current function in the environment

13

First ChocoPy Typing Rules

[BOOL-FALSE]

0, R + False : bool

14

First ChocoPy Typing Rules

0, R + False :

bool

[BOOL-FALSE]

“There is no premise that must be true, so we can directly
conclude that in the type environment 0 and R the
expression False is well typed and has type bool”

15

First ChocoPy Typing Rules

0, R + False :

bool

0, R+ True :

bool

[BOOL-FALSE]

[BOOL-TRUE]

“There is no premise that must be true, so we can directly
conclude that in the type environment 0 and R the
expression False is well typed and has type bool”

16

First ChocoPy Typing Rules

0, R + False :

bool

0, R+ True :

bool

[BOOL-FALSE]

[BOOL-TRUE]

“There is no premise that must be true, so we can directly
conclude that in the type environment 0 and R the
expression False is well typed and has type bool”

“There is no premise that must be true, so we can directly
conclude that in the type environment 0 and R the
expression True is well typed and has type bool”

17

First ChocoPy Typing Rules

0, R+ e, : bool
0, R+ e, : bool
[AND]

O, R+ e, and e, : bool

“If e, has type bool in the type environment 0 and R, and
if ez has type bool in the same type environment O and R,
then we can conclude that
in the same type environment O and R
the expression e, and e, is well typed and has type bool”

18

Example of Type Checking

0, R + False and (True and False) : bool

[?]

False : bool

[BOOL-FALSE]

True : bool

F e, : bool
F e, : bool

[BOOL-TRUE]

e, and e,

[AND]

: bool

19

Example of Type Checking

[BOOL-FALSE]
0, R + False : bool

[BOOL-TRUE]
0, R+ True : bool

0, R + False : bool
O, R+ e, : bool

0, R + True and False : bool 0, R+ e, : bool

0, R + False and (True and False) : bool 0, R+ e, and e, : bool

Example of Type Checking

0, R - False :

bool

0, R - True and False

: bool

0, R + False and (True and False) : bool

[AND]

[BOOL-FALSE]

0, R + False : bool
[BOOL-TRUE]
0, R+ True : bool
O, R+ e, : bool
O, R+ e, : bool
[AND]
O, R+ e, and e, : bool

21

Example of Type Checking

0, R + False :

bool

[?]

0, R - True and False

: bool

0, R + False and (True and False) : bool

[?]

[AND]

[BOOL-FALSE]

0, R + False : bool
[BOOL-TRUE]
0, R+ True : bool
O, R+ e, : bool
O, R+ e, : bool
[AND]
O, R+ e, and e, : bool

22

Example of Type Checking

0, R + False :

bool

[BOOL-FALSE]

0, R - True and False

: bool

0, R + False and (True and False) : bool

[?]

[AND]

[BOOL-FALSE]

0, R + False : bool
[BOOL-TRUE]
0, R+ True : bool
O, R+ e, : bool
O, R+ e, : bool
[AND]
O, R+ e, and e, : bool

23

Example of Type Checking

0, R - False :

bool

[BOOL-FALSE]

0, R+ True : bool

0, R + False : bool

0, R - True and False

: bool

0, R + False and (True and False) : bool

[AND]

[AND]

[BOOL-FALSE]

0, R + False : bool
[BOOL-TRUE]
0, R+ True : bool
O, R+ e, : bool
O, R+ e, : bool
[AND]
O, R+ e, and e, : bool

24

Example of Type Checking

[BOOL-FALSE]

0, R + False : bool
O, R+ True : bool
0, R + False : bool
O, R+ True and False : bool

0, R + False and (True and False) : bool

[AND]

[AND]

[BOOL-FALSE]

0, R + False : bool
[BOOL-TRUE]
0, R+ True : bool
0, R e, : bool
0, R , + bool
[AND]
O, R+ e, and e, : bool

25

Example of Type Checking

0, R + False :

bool

[BOOL-FALSE]

[?]

O, R+ True : bool

0, R + False

[?]
: bool

0, R - True and False :

bool

0, R + False and (True and False) : bool

[AND]

[AND]

[BOOL-FALSE]

0, R + False : bool
[BOOL-TRUE]
0, R+ True : bool
0, R e, : bool
0, R , + bool
[AND]
O, R+ e, and e, : bool

26

Example of Type Checking

0, R + False :

bool

[BOOL-FALSE]

[BOOL-TRUE]
O, R+ True : bool

[?]

0, R + False : bool

O, R+ True and False : bool

0, R + False and (True and False) : bool

[AND]

[AND]

[BOOL-FALSE]

0, R + False : bool
[BOOL-TRUE]
0, R+ True : bool
0, R e, : bool
O, R+ e, : bool
[AND]
O, R+ e, and e, : bool

27

Example of Type Checking

0, R + False :

bool

[BOOL-FALSE]

0, R - True

[BOOL-TRUE]
: bool

[BOOL-FALSE]
0, R + False : bool

0, R F True

[AND]

and False : bool

[AND]

0, R + False and (True and False) : bool

[BOOL-FALSE]

0, R + False : bool
[BOOL-TRUE]
0, R+ True : bool
0, R e, : bool
O, R+ e, : bool
[AND]
O, R+ e, and e, : bool

28

