Compiling Techniques
Lecture 11: Type Analysis (Part 2)

First ChocoPy Typing Rule that use the Environment

0(id) = T; where T is not a function type.
[VAR-READ]

O, Rrid : T

“If the variable id is in the type environment 0 with type T, and
T is not a function type
then we can conclude that
in the same type environment O and R
the expression id is well typed and has type T”

Example of Type Checking with Environment

0(id) = T; where T is not
a function type.
[VAR-READ]

O, Rrid : T

O, R+ e : int
[NEGATE]

[?] 0, R+ -e : int

{x: int}, R + -x : int

Example of Type Checking with Environment

0(id) = T; where T is not
a function type.

[VAR-READ]
O, Rrid : T
[?] 0, R+ e : int
{x: int}, R + x : 1int [NEGATE]
[NEGATE] 0O, R+ -e : int

{x: int}, R + -x : int

Example of Type Checking with Environment

0(id) = T; where T is not
a function type.

[VAR-READ]
O, Rrid : T
{x: int}(x) = int; where int is not
a function type
[VAR-READ] O, R+ e : int
{x: int}, R+ x : int [NEGATE]
[NEGATE] 0, R+ -e : int

{x: int}, R + -x : int

First ChocoPy Typing Rule that use the Environment

o(id) =T

O, Rre, : T,

T, <sa T

[VAR-ASSIGN-STMT]

O, R+ id = e,

First ChocoPy Typing Rule that use the Environment

0(id) = T
O, Rre, : T,

T1T

0, RN id = e,

[VAR-ASSIGN-STMT]

What is this?

Assignment compatibility

- Besides the subtyping relationship, ChocoPy introduces another relation
between two types: assignment compatibility (sa)

- The idea is that we may assign a value of type T: to something of type T:
iff T+ is assignment compatible with T-

- T:<aT., iff at least one of the following is true:
Ti<T.(i.e., Tiis a subtype of T2)
T1is <None> and T: is not int, bool, or str
T.isalisttype [T] and T:is <Empty>
T.isalisttype [T] and Tiis [<None>], where <None> <a T

First ChocoPy Typing Rule that use the Environment

o(id) = T “If the variable id is in the type environment 0 with type T, and

O, Rre, : T, expression e, has type T, in the same type environment 0 and R, and

T, <sa T T, is assignment compatible with T,
[VAR-ASSIGN-STMT] then we can conclude that

0, R+ id = e, in the same type environment 0 and R

the expression id = el is well typed”

Note: we are checking a statement that has no type!

ChocoPy Typing Rule for Conditional Expressions

o

, R+ e, : bool
O, Rre, : T,
, RFe, T,

o

[COND]
O, Rre, if e, else e, : T, U T,

10

ChocoPy Typing Rule for Conditional Expressions

0, R+ e, : bool
O, Rre, : T,
O, Rre, : T,

[COND]
O, Rre, if e, else e, : T,

What is this?

11

Join of Types

- Sometimes (e.g, when type checking a conditional expression), we need to find a single type that
can be used to represent the two original types. For this, we define the join operator

- The join of two types T1 and T: (written as T1 LI T») is:
- TifTi=aT.
- TyifT.<aT;
- object otherwise, as it is the least common ancestor of T+ and T

12

ChocoPy Typing Rule for Conditional Expressions

0, R+ e, : bool
O, Rre, : T,

“If the expression eo has type bool in the type environment 0 and R, and
the expression e, has type T, in the same type environment O and R, and
the expression e, has type T, in the same type environment 0 and R,
then we can conclude that
in the same type environment 0 and R
the expression e; if eo else e, is well typed and has type T, LI T2.”

13

Example of Type Checking for Conditional Expressions

0, R+ [True] if True else [] :

[bool]

object

[bool] LI <Empty>

T:<aT:

T:<T: (i.e., T1is a subtype of T:)
T1is <None> and

T2 is not int, bool, or str
T.isalisttype [T] and

Tiis <Empty>

T.isalisttype [T] and

Tiis [<None>], where <None> <a T

14

Example of Type Checking for Conditional Expressions

0, R+ [True] if True else [] : [bool] LI <Empty>

[bool] object Ti=aT:

o T:<T:(i.e., Tiis asubtype of T,)
0, R+ [True] if True else None : [bool] LI <None> e Tiis <None> and
T2 is not int, bool, or str
e T:isalisttype [T] and
Tiis <Empty>
e T:isalisttype [T] and
Tiis [<None>], where <None> <a T

[bool] object

15

Example of Type Checking for Conditional Expressions

0, R+ [True] if True else [] : [bool] LI <Empty>

[bool] object

0, R+ [True] if True else None : [bool] LI <None>

[bool] object

0, R + [True] if True else [None] : [bool]LI[<None>]

[bool] object

T:<aT:

T:<T: (i.e., T1is a subtype of T:)
T1is <None> and

T2 is not int, bool, or str
T.isalisttype [T] and

Tiis <Empty>

T.isalisttype [T] and

Tiis [<None>], where <None> <a T

16

Example of Type Checking for Conditional Expressions

0, R+ [True] if True else [] : [bool] LI <Empty>

[bool] object

0, R+ [True] if True else None : [bool] LI <None>

[bool] object

0, R + [True] if True else [None] : [bool]LI[<None>]

[bool] object

T:<aT:

T:<T: (i.e., T1is a subtype of T:)
T1is <None> and

T2 is not int, bool, or str
T.isalisttype [T] and

Tiis <Empty>

T.isalisttype [T] and

Tiis [<None>], where <None> <a T

17

ChocoPy Function Definition Typing Rule

T =T, if return type is present, <None> otherwise

O(f) = {T, x . x T >T; X,y wy X ;

n?

Vi T, ey v s T}

m

O[T,/x, J.IT /x I[T" /v, 1..[T' /v.1, T+ b

0, R+ def f(x,: T,, v, x,: T) [> T,1? : b

n

[FUNC-DEF]

18

ChocoPy Function Definition Typing Rule

1. Set T to be the return type, or <None>

T = T, if return type is present, <None> otherwise

O(f) = {T, x . x T >T; X,y wy X ;

n?

Vi T, ey v s T}

O[T,/x, J.IT /x I[T" /v, 1..[T' /v.1, T+ b
[FUNC-DEF]

0, R+ def f(x,: T,, v, x,: T) [> T,1? : b

n

ChocoPy Function Definition Typing Rule

1. Set T to be the return type, or <None>

— 2. Get information about f from the environment

T = T, if return type is present, <None> otherwise

O(f) = {T, x . x T >T; X,y w, X ;

n?

Vi T, ey v s T}

O[T,/x, J.IT /x I[T" /v, 1..[T' /v.1, T+ b

0, R+ def f(x,: T,, v, x,: T) [> T,1? : b

n

[FUNC-DEF]

20

ChocoPy Function Definition Typing Rule

1. Set T to be the return type, or <None>

— 2. Get information about f from the environment

T = T, if return type is present, <None> otherwise

O(f) = {T, x . x T >T; X,y w, X ;

n?

Vi T, ey v s T}

O[T,/x, J.IT /x I[T" /v, 1..[T' /v.1, T+ b
[FUNC-DEF]

0, R+ def f(x,: T,y v, x,: T) [> T,1? : b

n

3. Type check function body b with an adjusted environment, where
—_— - x; has type T, and v, has type T", (notation: O[T/c](c) = T; O[T/c](d) = 0(d) if d # c)
- Tis used instead of R

Implementing ChocoPy Typing Rules

Basic idea

- Implement one Python function for each typing rule, e.g.:

[NEGATE] rule

0, R, - - e: int 0, R+ e : int
def negate_rule(o: LocalEnvironment, r: Type, e: Operation) — Type: [NEGATE]
0, R, e: int 0, RF -e : 1nt

check_type(check_expr(o, r, e), expected=int_type)
return int_type

- Have a dispatch function that decides which typing rule to invoke.

22

Implementing dispatch function

Basic idea

- Implement one Python function for each typing rule.

- Have a dispatch function that decides which typing rule to invoke:

def check_expr(o: LocalEnvironment, r: Type, op: Operation) — Type:
if isinstance(op, choco_ast.UnaryExpr):
unary_expr = op
op = unary_expr.op.data
e = unary_expr.value.blocks[@].ops[0]
if op = "-":
return negate_rule(o, r, e)
else:
raise Exception("Not implemented yet")
else:
raise Exception("Not implemented yet")

23

Dispatch of Typing Rules

- There are three different dispatch functions:

- def check_stmt_or_def_list(o, r, ops: List[Operation]) for list of statements and definitions
- def check_stmt_or_def(o, r, op: Operation) forstatements and definitions
- def check_expr(o, r, op: Operation) — Type for expressions

- Challenge:
The syntax alone is not always enough to decide which typing rule to invoke!

0, Rr e, : int

0, R+ e, : int 0, R+re, : str

ope {+, -, *, //, %} [STR-CONCAT]
[ARITH] O, R+e, + e, : str

O, R+e, ope, : int

To decide which rule to invoke, | need to know the type of el or e2!

24

