
Compiling Techniques
Lecture 11: Type Analysis (Part 2)

First ChocoPy Typing Rule that use the Environment

2

 O(id) = T; where T is not a function type.
-- [VAR-READ]
 O, R ⊢ id : T

“If the variable id is in the type environment O with type T, and
T is not a function type

then we can conclude that
in the same type environment O and R

the expression id is well typed and has type T”

Example of Type Checking with Environment

3

 O(id) = T; where T is not
 a function type.
----------------------- [VAR-READ]
 O, R ⊢ id : T

 O, R ⊢ e : int
------------------ [NEGATE]
 O, R ⊢ -e : int

---[?]
 {x: int}, R ⊢ -x : int

Example of Type Checking with Environment

4

 O(id) = T; where T is not
 a function type.
----------------------- [VAR-READ]
 O, R ⊢ id : T

 O, R ⊢ e : int
------------------ [NEGATE]
 O, R ⊢ -e : int

 -----------------------------[?]
 {x: int}, R ⊢ x : int
---[NEGATE]
 {x: int}, R ⊢ -x : int

Example of Type Checking with Environment

5

 O(id) = T; where T is not
 a function type.
----------------------- [VAR-READ]
 O, R ⊢ id : T

 O, R ⊢ e : int
------------------ [NEGATE]
 O, R ⊢ -e : int

 {x: int}(x) = int; where int is not
 a function type
 -----------------------------[VAR-READ]
 {x: int}, R ⊢ x : int
---[NEGATE]
 {x: int}, R ⊢ -x : int

First ChocoPy Typing Rule that use the Environment

6

 O(id) = T
 O, R ⊢ e₁ : T₁
 T₁ ≤a T
----------------- [VAR-ASSIGN-STMT]
 O, R ⊢ id = e₁

First ChocoPy Typing Rule that use the Environment

7

 O(id) = T
 O, R ⊢ e₁ : T₁
 T₁ ≤a T
----------------- [VAR-ASSIGN-STMT]
 O, R ⊢ id = e₁

What is this?

Assignment compatibility

- Besides the subtyping relationship, ChocoPy introduces another relation
between two types: assignment compatibility (≤a)

- The idea is that we may assign a value of type T₁ to something of type T₂
iff T₁ is assignment compatible with T₂

- T₁ ≤a T₂, iff at least one of the following is true:
- T₁ ≤ T₂ (i.e., T₁ is a subtype of T₂)
- T₁ is <None> and T₂ is not int, bool, or str
- T₂ is a list type [T] and T₁ is <Empty>
- T₂ is a list type [T] and T₁ is [<None>], where <None> ≤a T

8

First ChocoPy Typing Rule that use the Environment

9

 O(id) = T
 O, R ⊢ e₁ : T₁
 T₁ ≤a T
----------------- [VAR-ASSIGN-STMT]
 O, R ⊢ id = e₁

“If the variable id is in the type environment O with type T, and
expression e₁ has type T₁ in the same type environment O and R, and

T₁ is assignment compatible with T,
then we can conclude that

in the same type environment O and R
the expression id = e1 is well typed”

Note: we are checking a statement that has no type!

ChocoPy Typing Rule for Conditional Expressions

10

 O, R ⊢ e₀ : bool
 O, R ⊢ e₁ : T₁
 O, R ⊢ e₂ : T₂
------------------------------------ [COND]
 O, R ⊢ e₁ if e₀ else e₂ : T₁ ⨆ T₂

ChocoPy Typing Rule for Conditional Expressions

11

 O, R ⊢ e₀ : bool
 O, R ⊢ e₁ : T₁
 O, R ⊢ e₂ : T₂
------------------------------------ [COND]
 O, R ⊢ e₁ if e₀ else e₂ : T₁ ⨆ T₂

What is this?

Join of Types

- Sometimes (e.g, when type checking a conditional expression), we need to find a single type that
can be used to represent the two original types. For this, we define the join operator

- The join of two types T₁ and T₂ (written as T₁ ⨆ T₂) is:
- T₂ if T₁ ≤a T₂
- T₁ if T₂ ≤a T₁
- object otherwise, as it is the least common ancestor of T₁ and T₂

12

ChocoPy Typing Rule for Conditional Expressions

13

 O, R ⊢ e₀ : bool
 O, R ⊢ e₁ : T₁
 O, R ⊢ e₂ : T₂
------------------------------------ [COND]
 O, R ⊢ e₁ if e₀ else e₂ : T₁ ⨆ T₂

“If the expression e₀ has type bool in the type environment O and R, and
the expression e₁ has type T₁ in the same type environment O and R, and

the expression e₂ has type T₂ in the same type environment O and R,
then we can conclude that

in the same type environment O and R
the expression e₁ if e₀ else e₂ is well typed and has type T₁ ⨆ T₂.”

Example of Type Checking for Conditional Expressions

14

 O, R ⊢ [True] if True else [] : [bool] ⨆ <Empty>

[bool] object T₁ ≤a T₂

● T₁ ≤ T₂ (i.e., T₁ is a subtype of T₂)
● T₁ is <None> and

T₂ is not int, bool, or str
● T₂ is a list type [T] and

T₁ is <Empty>
● T₂ is a list type [T] and

T₁ is [<None>], where <None> ≤a T

Example of Type Checking for Conditional Expressions

15

 O, R ⊢ [True] if True else [] : [bool] ⨆ <Empty>

 O, R ⊢ [True] if True else None : [bool] ⨆ <None>

[bool] object

[bool] object

T₁ ≤a T₂

● T₁ ≤ T₂ (i.e., T₁ is a subtype of T₂)
● T₁ is <None> and

T₂ is not int, bool, or str
● T₂ is a list type [T] and

T₁ is <Empty>
● T₂ is a list type [T] and

T₁ is [<None>], where <None> ≤a T

Example of Type Checking for Conditional Expressions

16

 O, R ⊢ [True] if True else [] : [bool] ⨆ <Empty>

 O, R ⊢ [True] if True else None : [bool] ⨆ <None>

 O, R ⊢ [True] if True else [None] : [bool]⨆[<None>]

[bool] object

[bool] object

[bool] object

T₁ ≤a T₂

● T₁ ≤ T₂ (i.e., T₁ is a subtype of T₂)
● T₁ is <None> and

T₂ is not int, bool, or str
● T₂ is a list type [T] and

T₁ is <Empty>
● T₂ is a list type [T] and

T₁ is [<None>], where <None> ≤a T

Example of Type Checking for Conditional Expressions

17

 O, R ⊢ [True] if True else [] : [bool] ⨆ <Empty>

 O, R ⊢ [True] if True else None : [bool] ⨆ <None>

 O, R ⊢ [True] if True else [None] : [bool]⨆[<None>]

[bool] object

[bool] object

[bool] object

T₁ ≤a T₂

● T₁ ≤ T₂ (i.e., T₁ is a subtype of T₂)
● T₁ is <None> and

T₂ is not int, bool, or str
● T₂ is a list type [T] and

T₁ is <Empty>
● T₂ is a list type [T] and

T₁ is [<None>], where <None> ≤a T

ChocoPy Function Definition Typing Rule

18

 T = T₀ if return type is present, <None> otherwise

 O(f) = {T₁ ⨯ … ⨯ Tn → T; x₁, …, xn; v₁: T'₁, …, vm: T'm}

 O[T₁/x₁]…[Tn/xn][T'₁/v₁]…[T'm/vm], T ⊢ b
-- [FUNC-DEF]
 O, R ⊢ def f(x₁: T₁, …, xn: Tn) ⟦→ T₀⟧? : b

ChocoPy Function Definition Typing Rule

19

 T = T₀ if return type is present, <None> otherwise

 O(f) = {T₁ ⨯ … ⨯ Tn → T; x₁, …, xn; v₁: T'₁, …, vm: T'm}

 O[T₁/x₁]…[Tn/xn][T'₁/v₁]…[T'm/vm], T ⊢ b
-- [FUNC-DEF]
 O, R ⊢ def f(x₁: T₁, …, xn: Tn) ⟦→ T₀⟧? : b

1. Set T to be the return type, or <None>

ChocoPy Function Definition Typing Rule

20

 T = T₀ if return type is present, <None> otherwise

 O(f) = {T₁ ⨯ … ⨯ Tn → T; x₁, …, xn; v₁: T'₁, …, vm: T'm}

 O[T₁/x₁]…[Tn/xn][T'₁/v₁]…[T'm/vm], T ⊢ b
-- [FUNC-DEF]
 O, R ⊢ def f(x₁: T₁, …, xn: Tn) ⟦→ T₀⟧? : b

1. Set T to be the return type, or <None>

2. Get information about f from the environment

ChocoPy Function Definition Typing Rule

21

 T = T₀ if return type is present, <None> otherwise

 O(f) = {T₁ ⨯ … ⨯ Tn → T; x₁, …, xn; v₁: T'₁, …, vm: T'm}

 O[T₁/x₁]…[Tn/xn][T'₁/v₁]…[T'm/vm], T ⊢ b
-- [FUNC-DEF]
 O, R ⊢ def f(x₁: T₁, …, xn: Tn) ⟦→ T₀⟧? : b

1. Set T to be the return type, or <None>

2. Get information about f from the environment

3. Type check function body b with an adjusted environment, where
- x

i
 has type T

i
 and v

i
 has type T'

i
 (notation: O[T/c](c) = T; O[T/c](d) = O(d) if d ≠ c)

- T is used instead of R

Implementing ChocoPy Typing Rules

Basic idea

- Implement one Python function for each typing rule, e.g.:

- Have a dispatch function that decides which typing rule to invoke.

22

[NEGATE] rule
O, R, |- - e: int
def negate_rule(o: LocalEnvironment, r: Type, e: Operation) -> Type:
 # O, R, |- e: int
 check_type(check_expr(o, r, e), expected=int_type)
 return int_type

 O, R ⊢ e : int
------------------ [NEGATE]
 O, R ⊢ -e : int

Implementing dispatch function

Basic idea

- Implement one Python function for each typing rule.
- Have a dispatch function that decides which typing rule to invoke:

23

def check_expr(o: LocalEnvironment, r: Type, op: Operation) -> Type:
 if isinstance(op, choco_ast.UnaryExpr):
 unary_expr = op
 op = unary_expr.op.data
 e = unary_expr.value.blocks[0].ops[0]
 if op == "-":
 return negate_rule(o, r, e)
 else:
 raise Exception("Not implemented yet")
 else:
 raise Exception("Not implemented yet")

Dispatch of Typing Rules

- There are three different dispatch functions:
- def check_stmt_or_def_list(o, r, ops: List[Operation]) for list of statements and definitions
- def check_stmt_or_def(o, r, op: Operation) for statements and definitions
- def check_expr(o, r, op: Operation) -> Type for expressions

- Challenge:
The syntax alone is not always enough to decide which typing rule to invoke!

To decide which rule to invoke, I need to know the type of e1 or e2!

24

 O, R ⊢ e₁ : int
 O, R ⊢ e₂ : int
 op ∈ {+, -, *, //, %}
------------------------- [ARITH]
O, R ⊢ e₁ op e₂ : int

O, R ⊢ e₂ : str
------------------------- [STR-CONCAT]
O, R ⊢ e₁ + e₂ : str

