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recall: Computing Nash Equilibria: a first clue

Recall “Useful corollary for NEs”, from Lecture 3:

If x∗ is an NE, then if x∗i (j) > 0 then Ui(x
∗
−i ; πi ,j) = Ui(x

∗).

Using this, we can fully characterize NEs:
Proposition 1 In an n-player game, profile x∗ is a NE if and
only if there exist w1, . . . ,wn ∈ R, such that:

1. ∀ players i , & ∀ j ∈ support(x∗i ), Ui(x
∗
−i ; πi ,j) = wi , &

2. ∀ players i , & ∀ j ̸∈ support(x∗i ), Ui(x
∗
−i ; πi ,j) ≤ wi .

Note: Any such wi ’s necessarily satisfy wi = Ui(x
∗).

Proof Follows easily from what we already know, particularly
1st claim in the proof of Nash’s theorem.



using our first clue

▶ Suppose we somehow know support sets,
support1 ⊆ S1, . . . , supportn ⊆ Sn, for some Nash
Equilibrium x∗ = (x∗1 , . . . , x

∗
n ).

▶ Then, using Proposition 1, to find a NE we only need to
solve the following system of constraints:

1. ∀ players i , & ∀ j ∈ supporti , Ui (x−i ;πi ,j) = wi ,
2. ∀ players i , & ∀ j ̸∈ supporti , Ui (x−i ;πi ,j) ≤ wi .
3. ∀ players i = 1, . . . , n,

∑mi
j=1 xi (j) = 1.

4. ∀ players i = 1, . . . , n, & for j ∈ supporti , xi (j) ≥ 0.
5. ∀ players i = 1, . . . , n, & for j ̸∈ supporti , xi (j) = 0.

▶ This system has
∑n

i=1mi + n variables,
x1(1), . . . , x1(m1), . . . , xn(1), . . . , xn(mn),w1, . . . ,wn.

▶ Unfortunately, for n > 2 players, this is a
non-linear system of constraints.
Let’s come back to the case n > 2 players later.



two-player case

▶ In the 2-player case, the system of constraints is an LP!!
But:

Question: How do we find support1 & support2?

Answer: Just guess!!
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First algorithm to find NE’s in 2-player games

Input: A 2-player strategic game Γ, given by rational values
u1(s, s

′) & u2(s, s
′), for all s ∈ S1 & s ′ ∈ S2. (I.e., the input is

(2 ·m1 ·m2) rational numbers.)
Algorithm:

▶ For all possible support1 ⊆ S1 & support2 ⊆ S2:
▶ Check if the corresponding LP has a feasible solution

x∗,w1, . . . ,wn. (using, e.g., Simplex).
▶ If so, STOP: the feasible solution x∗ is a Nash

Equilibrium (and wi = Ui (x
∗)).

Question: How many possible subsets support1 and support2
are there to try?

Answer: 2(m1+m2)

So, unfortunately, the algorithm requires worst-case
exponential time.
But, at least we have our first algorithm.
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remarks on algorithm 1

▶ The algorithm immediately yields:
Proposition Every finite 2-player game has a rational
NE. (Furthermore, the rational numbers are not “too
big”, i.e., are polynomial sized.)

▶ The algorithm can easily be adapted to find not just any
NE, but a “good” one. For example:
Finding a NE that maximizes “(util.) social welfare”:
▶ For each support sets, simply solve the LP constraints

while maximizing the objective

f (x ,w) = w1 + w2 + . . .+ wn

▶ Keep track of best NE encountered, & output optimal
NE after checking all support sets.



▶ The same algorithm works for any notion of “good” NE
that can be expressed via a linear objective and
(additional) linear contraints: (e.g.: maximize Jane’s
payoff, minimize John’s, etc.)

▶ Note: This algorithm shows that finding a NE for 2-player
games is in “NP”.



Towards another algorithm for 2-players

Let A be the (m1 ×m2) payoff matrix for player 1,
B be the (m2 ×m1) payoff matrix for player 2,
w1 be the m1-vector, all entries = w1,
w2 be the m2-vector, all entries = w2.

Note: We can safely assume A > 0 and B > 0: by adding a
large enough constant, d , to every entry we “shift” each
matrix > 0. Nothing essential about the game changes:
payoffs just increase by d .

We can get another, related, characterization of NE’s by using
“slack variables” as follows:



Lemma x∗ = (x∗1 , x
∗
2 ) is a NE if and only if:

1. There exists a m1-vector y ≥ 0, and w1 ∈ R, such that

Ax∗2 + y = w1

& for all j = 1, . . . ,m1, x
∗
1 (j) = 0 or (y)j = 0.

2. There exists a m2-vector z ≥ 0, and w2 ∈ R, such that

Bx∗1 + z = w2

& for all j = 1, . . . ,m2, x
∗
2 (j) = 0 or (z)j = 0.

Proof Again follows by the Useful Corollary to Nash: in a NE
x∗ whenever, e.g., x∗1 (j) > 0, U(x∗−1; π1,j) = U(x∗). Let
(y)j = U(x∗)− U(x∗−1; π1,j).



rephrasing the problem

The Lemma gives us some “constraints” that characterize
NE’s:

1. Ax2 + y = w1 and Bx1 + z = w2

2. x1, x2, y , z ≥ 0.

3. x1 and x2 must be probability distributions,
i.e.,

∑m1

j=1 x1(j) = 1 and
∑m2

j=1 x2(j) = 1.

4. Additionally, x1 and y , as well as x2 and z , need to be
“complementary”:
for j = 1, . . . ,m1, either x1(j) = 0 or (y)j = 0,
for j = 1, . . . ,m2, either x2(j) = 0 or (z)j = 0.

Since everything is ≥ 0, we can write this as

yTx1 = 0 and zTx2 = 0



continuing the reformulation
Note that, because A > 0 and B > 0, we know that w1 > 0
and w2 > 0 in any solution.

Using this, we can “eliminate” w1 and w2 from the constraints
as follows: Let x ′2 = (1/w1)x2, y

′ = (1/w1)y , x
′
1 = (1/w2)x1,

and z ′ = (1/w2)z .
Let 1 denote an all 1 vector (of appropriate dimension).
Suppose we find a solution to

Ax ′2 + y ′ = 1 and Bx ′1 + z ′ = 1

x ′1, x
′
2, y

′, z ′ ≥ 0, (y ′)Tx ′1 = 0, and (z ′)Tx ′2 = 0.
If, in addition, x ′1 ̸= 0 or x ′2 ̸= 0, then, by complementarity
both x ′1 ̸= 0 and x ′2 ̸= 0.
In this case we can “recover” a solution x1, x2, y , z , and w1

and w2 to the original constraints, by multiplying x ′1 and x ′2 by
“normalizing” constants w1 and w2, so that each of x1 = w2x

′
1

and x2 = w1x
′
2 define probability distributions. These

normalizing constants define w1 and w2 in our solution.
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2-player NE’s as Linear Complementarity Problem
Let

M =

[
0 A
B 0

]
u =

[
x ′1
x ′2

]
v =

[
y ′

z ′

]
“Our Goal:” Find a solution u, v , to

Mu + v = 1

such that u, v ≥ 0, and uTv = 0.
This is an intance of a Linear Complementarity Problem, a
classic problem in mathematical programming (see, e.g., the
book [Cottle-Pang-Stone’92]).

But, we already know one solution: u = 0, v = 1.
Our Actual Goal: is to find a solution where u ̸= 0.
Wait! Doesn’t “Mu + v = 1” look familiar??
Sure! It’s just a “Feasible Dictionary” (from lect. 6 on
Simplex), with “Basis” the variables in vector v .
Question: How do we move from this “complementary basis”
to one where u ̸= 0?
Answer: Pivoting!! (in a very selective way)
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sketch of the Lemke-Howson Algorithm
1) Start at the “extra” “complementary Basis”
β = {(v)1, . . . , (v)m}, where m = m1 +m2 (with BFS
u = 0, v = 1). β is complementary if for k ∈ {1, . . . ,m},
either (u)k ̸∈ β or (v)k ̸∈ β (but not both, since |β| = m).

2) For some i , move via pivoting to a “neighboring” “i-almost
complementary” basis β′. β′ is i-almost complementary if
for k ∈ {1, . . . ,m} \ {i}, (u)k ̸∈ β′ or (v)k ̸∈ β′.
3) While (new basis isn’t actually complementary)
▶ There’s a unique j , such that both (u)j & (v)j are not in

the new basis: one was just kicked out of the basis.

▶ If (u)j was just kicked out, move (v)j into the basis by
pivoting. If (v)j was just kicked, move (u)j in. (Selective
pivot rules ensure only one possible entering/leaving pair.)

▶ Newest basis is also i -almost complementary.
4) STOP: we’ve reached a different complementary basis &
BFS. A NE is obtained by “normalizing” u = [x ′1 x ′2]

T .
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We are skipping lots of details related to “degeneracy”, etc.
(similar to complications that arose in Simplex pivoting).
Question Why should this work?
A key reason: With appropriately selective pivoting rules, each
i-almost complementary Basis (“vertex”) has 2 neighboring
“vertices” unless it is actually a complementary Basis, in
which case it has 1. This assures that starting at the “extra”
complementary BFS, we will end up at “the other end of the
line”. Let’s see it in pictures:

"extra" complementary BFS
"real" NE

"real" NE
"real" NE

"real" NE"real" NE



remarks
� The Lemke-Howson (1964) algorithm has a “geometric”
interpretation. (See, [von Stengel, Chapter 3, in Nisan et. al.
AGT book, 2007]. Our treatment is closer to
[McKelvey-McLennan’96], see course web page.)

� The algorithm’s correctness gives another proof of Nash’s
theorem for 2-player games only, just like Simplex’s gives
another proof of Minimax (via LP-duality).

� How fast is the LH-algorithm? Unfortunately, examples
exist requiring exponentially many pivots,
for any permissible pivots (see [Savani-von Stengel’03]).

� Is there a polynomial time algorithm to find a NE in
2-player games? This is an open problem!

� However, finding “good” NE’s that, e.g., maximize “social
welfare” is NP-hard. Even knowing whether there is > 1 NE is
NP-hard. ([Gilboa-Zemel’89], [Conitzer-Sandholm’03]).
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remarks
� The Lemke-Howson (1964) algorithm has a “geometric”
interpretation. (See, [von Stengel, Chapter 3, in Nisan et. al.
AGT book, 2007]. Our treatment is closer to
[McKelvey-McLennan’96], see course web page.)

� The algorithm’s correctness gives another proof of Nash’s
theorem for 2-player games only, just like Simplex’s gives
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games with > 2 players
� Nash himself (1951, page 294) gives a 3 player “poker”
game where the only NE is irrational.
So, it isn’t so sensible to speak of computing an “exact” NE
when the number of players is > 2.

� We can try to approximate NEs. But there are different
notions of approximate NE:
Definition 1: A mixed strategy profile x is called a ϵ-Nash
Equilibrium, for some ϵ > 0, if ∀ i , and all mixed strategies
yi : Ui(x) ≥ Ui(x−i ; yi)− ϵ.
I.e.: No player can increase its own payoff by more than ϵ by
unilaterally switching its strategy.
Definition 2: A mixed strategy profile x is ϵ-close to an
actual NE, for some ϵ > 0, if there is an actual NE x∗, such
that ∥x − x∗∥∞ ≤ ϵ, i.e., |x∗i (j)− xi(j)| < ϵ for all i , j .

� It turns out these different notions of approximation of an
NE have very different computation complexity implications.
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What is the complexity of computing an ϵ-NE?

� It turns out that:
(A) computing an NE for 2-player games, and
(B) computing an ϵ-NE for > 2-player games
are reducible to each other.
Both are at least as hard as ANOTHER-LINE-ENDPOINT:
“Find another end-point of a succinctly given (directed) line
graph, with indegree and outdegree ≤ 1.”.

� [Papadimitriou 1992], defined a complexity class called
PPAD to capture such problems, where
ANOTHER-LINE-ENDPOINT is PPAD-complete.
He took inspiration from ideas in Lemke-Howson algorithm and
an algorithm by [Scarf’67] for computing almost fixed points.

� [Chen-Deng’06] & [Daskalakis-Goldberg-Papadimitriou,’06],
showed that computing an NE in 2-player games, & computing
a ϵ-NE in > 2-player games, respectively, are PPAD-complete.

� What about ϵ-close approximating an actual NE??
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The complexity of computing an actual NE in games with > 2 players

� For games with > 2 players, approximating an actual NE,
i.e., computing a profile ϵ-close to an actual NE, even for any
ϵ < 1/2, is MUCH harder. Not even known to be in NP. The
best complexity upper bound we know is PSPACE (using
deep but impractical algorithms for solving nonlinear systems
of equations [Gregoriev-Vorobjov’88,Canny’88,Renegar’92]).

� [Etessami-Yannakakis’07] showed that if we can
approximate an actual NE even in NP, that would resolve
major open problems in the complexity of numerical analysis
(seems unlikely at present). They showed computing or
approximating an actual NE is FIXP-complete, where FIXP
consists of all problems reducible to computing a fixed point
for algebraic Brouwer functions defined by operators
{+, ∗,−, /,max,min} and rational constants.



� Such fixed point computation problems have many other
important applications, in particular, for computation of
market equilibria.

� In turns out that PPAD is exactly the “piecewise linear”
fragment of FIXP, consisting of problems reducible to Brouwer
fixed point problems defined by algebraic functions using
operators {+,−,max,min}.
� These results are beyond the scope of this course.
If you are interested to learn more, see:

K. Etessami and M. Yannakakis, “On the Complexity of Nash
Equilibria and other Fixed Points”, SIAM Journal on
Computing, 39(2), pp. 2531-2597, 2010.

and the references therein.


