
AGTA Tutorial Sheet 2 solutions

1 Question 1

Consider the finite 2 player zero sum game given by the following payoff matrix
A, for player 1 (row player):

A =


4 2 9 2 5
6 3 5 9 7
1 4 8 5 7
5 1 3 5 6


Observe that the last row is strictly dominated by the second row. Also, the

second column strictly dominates the 5th column (since −2 > −5, −3 > −7,
−4 > −7) obtaining in the residual game matrix:

 4 2 9 2
6 3 5 9
1 4 8 5


Note that the second column strictly dominates the 3rd column, since −2 >
−9,−3 > −5, −4 > −8. Now, row 1 is strictly dominated by row 2, and in the
residual game, column 2 strictly dominates column 4, since −3 > −9,−4 > −5,
leaving us with the final residual game:

A′ =

(
6 3
1 4

)

This is a 2× 2 game. The answer to the next question will show that there
is in fact a very simple way to “solve” a 2 × 2 game without using LP, even
when it is not zero-sum. However, just to illustrate the use of LP for solving
zero-sum games, and to illustrate the use of Fourier-Motzkin (FM) elimination
to solve LPs, we will use LP, and FM, to solve this 2× 2 zero-sum game.

To compute the minmaximizer strategy for player 1, as well as the value of
the game v, we can set up the following LP: Let xT = [p1 p2] to represent the
minmaximizer strategy for player 1. The LP is:

Maximize v
Subject to:
6p1 + p2 ≥ v
3p1 + 4p2 ≥ v
p1 + p2 = 1
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p1, p2 ≥ 0.
Using p2 = 1− p1, and substituting (1− p1) for p2, the system becomes:
Maximize v
Subject to:
p1 ≥ v−1

5

p1 ≤ 4− v

p1 ≥ 0 , p1 ≤ 1

Using FM to eliminate the variable p1, we have:
v−1
5 ≤ 4− v , or equivalently v ≤ 21

6 = 3.5
v−1
5 ≤ 1, or equivalently v ≤ 6,

and

4− v ≥ 0, or equivalently, v ≤ 4.

Note that to maximize v we can match the upper bound constraint that is
most stringent, in this case v ≤ 3.5. Therefore, maximizing v, we have that
v = 3.5. Therefore the optimal solution is v = 3.5, and plugging this back into
the eliminated inequalities, we get that p1 = p2 = 0.5.

Taking y =

[
q1
q2

]
to represent the maxminimizer strategy for player 2, the

dual of the LP presented above is:
Minimize u
subject to:
6q1 + 3q2 ≤ u
q1 + 4q2 ≤ u
q1 + q2 = 1
q1, q2 ≥ 0
Using q2 = 1− q1, the system becomes
Minimize u
subject to
q1 ≤ u−3

3
q1 ≥ 4−u

3
q1 ≥ 0
q1 ≤ 1
By eliminating q1, we have:
4−u
3 ≤ u−3

3 , or equivalently u ≥ 7
2 = 3.5

4−u
3 ≤ 1, or equivalently u ≥ 1

u−3
3 ≥ 0, or equivalently u ≥ 3.

Since we minimize u, we conclude that the minimum value which satisfies
the constraints, based on the most stringent lower bound constraint, is u = 3.5,
and therefore plugging this back into the eliminated constraints, we get q1 = 1

6
and q2 = 5

6 . Note that, as expected, u = v, as indeed it should because this
follows by the minimax theorem.
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2 Question 2

G =

 (7, 3) (6, 4) (5, 5) (4, 7)
(4, 2) (7, 9) (8, 6) (8, 8)
(6, 1) (9, 7) (2, 4) (6, 9)


Note that column 1 is strictly dominated by column 2, for player 2 (the

column player). Also, in the residual game bimatrix, row 1 is strictly dominated
by row 2 (for player 1, the row player). Also, column 3 is strictly dominated by
column 4. We are now left with the following residual game:

G′ =

(
(7, 9) (8, 8)
(9, 7) (6, 9)

)
It is easy to check that there are no pure Nash Equilibria. This is because

if either player plays a pure strategy, then it is clear by inspection of the game
that the unique best response of the other player is a pure strategy, and it is
also clear by inspection of the game that no pair of pure strategies constitutes a
NE. In every NE of this risidual game, it must be the case that both players use
both of their strategies with positive probability. We use the corollary to Nash’s
theorem to compute the unique NE in the residual game as follows: Suppose
player 1 plays strategy 1 with probability p and strategy 2 with probability
(1-p) in some N.E, where 0 < p < 1. Suppose player 2 plays strategy 1 with
probability q and strategy 2 with probability (1-q) in some N.E, where 0 < q < 1.

Using the corollary of the Nash theorem, if player 2 is playing against player
1’s mixed strategy, both of player 2’s pure strategies must be a best response
to player 1. The same argument applies for player 1.

Therefore,

7q + 8(1− q) = 9q + 6(1− q)

9p+ 7(1− p) = 8p+ 9(1− p)

By doing the arithmetic, we find p = 2
3 and q = 1

2 .
So, a NE for this game is: [(0, 2

3 ,
1
3 , 0); (0,

1
2 , 0,

1
2 )]. The expected payoff for

player 1 under this strategy profile is 7.5, whereas the expected payoff for player
2 is 8.33.

A strategy that is strictly dominated can not be played with non-zero prob-
ability in any NE, and therefore we don’t eliminate NE’s by eliminating strictly
dominated strategies. Also, p and q are both uniquely determined so it must
imply that there is only one NE in this game.

Final answer: [(0, 2
3 ,

1
3 ); (0,

1
2 , 0,

1
2 )]
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3 Question 3.

Claim: A = −AT implies xTAy = −yTAx for all vectors x, y of the right length.

Proof. xTAy = xT (−AT )y = −(xTAT y) = −(xTAT y)T = −yTAx, where the
second to last step uses the fact that BT = B for all 1 × 1-matrices, and the
last step uses the facts that (BT )T = B and (BC)T = CTBT . (One could of
course prove the claim by e.g. direct calculation)

In particular, the claim implies that xTAx = −xTAx, which gives xTAx = 0.
This means that whenever both players play with the same mixed strategy x,
they both have an expected payoff of zero. Thus in any strategy profile (x, y), if
one of the players has a negative expected payoff, they can improve by copying
the other players strategy. Thus no strategy profile giving non-zero expected
payoffs can be a Nash equilibrium of the game.

4 Question 4

Using the recipe from page 12 of the slides for lecture 4, we get the linear pro-
gram

Maximize v
Subject to:
(xTA)j ≥ v , j = 1, 2, 3∑2

i=1 xi = 1
x1 ≥ 0 , x2 ≥ 0

Writing this out explicitly, we get the linear program

Maximize v
Subject to:
2x1 + 7x2 ≥ v
9x1 + 0x2 ≥ v
4x1 + 3x2 ≥ v
x1 + x2 = 1
x1 ≥ 0, x2 ≥ 0

which is equivalent to the linear program that was given in the question. To
compute the dual using the general recipe, we first need to express this LP in
the general form of the “primal” in the “general recipe” (slide 8, of Lecture 7
on LP duality), namely:

Maximize cTx
Subject to:
(Bx)i ≤ bi , i = 1, . . . , d
(Bx)j = bj , i = d+ 1, . . . ,m
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xi ≥ 0 , i = 1, . . . , r

Using the given linear program we can get to the desired form by setting bT =
(0, 0, 0, 1), cT = (0, 0, 1), xT = (x1, x2, v), and

B =


−2 −7 1
−9 0 1
−4 −3 1
1 1 0


To be clear with the indices, our linear program is then
Maximize cTx
Subject to:
(Bx)i ≤ bi for i = 1, 2, 3
(Bx)4 = b4
xi ≥ 0 for i = 1, 2

Now, using the general recipe the dual is

Minimize bT y
Subject to:
(BT y)i ≥ ci for i = 1, 2
(BT y)3 = c3
yi ≥ 0 for i = 1, 2, 3,

which, when setting y = (y1, y2, y3, v) translates to

Mimimize v
Subject to:
−2y1 − 9y2 − 4y3 + v ≥ 0
−7y1 + 0y2 − 3y3 + v ≥ 0
y1 + y2 + y3 = 1
yi ≥ 0 for i = 1, 2, 3

which is easily seen to be equivalent to the LP for computing a maxminimizer
strategy, y, for player 2 together with the (minimax) value, v, of the game.
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