
30/01/2026

Advanced Database Systems
Spring 2026

Q&A Session 1

If you require this document in an alternative format, such as large print or a coloured background, please contact milos.nikolic@ed.ac.uk

1

ADMINISTRIVIA

Coursework was released last week
Start early – several things you can already begin working on

Ask questions on Piazza

Q&A sessions

Like office hours

You can ask questions about material & provide feedback

Each Q&A session includes a practice worksheet available on Learn

2

2

F ILES, PAGES, RECORDS

Tables stored as logical files consisting of pages, each containing a
collection of records

File (corresponds to a table)
 Page (many per file)
 Record (many per page)

The unit of access to physical disk is the page
1 I/O = read or write 1 page

3

3

PAGE BASICS

The page header keeps track of the records in the page

The page header may contain fields such as:
Number of records in the page

Pointer to segment of free space in the page

Bitmap indicating which parts of the page are in use

4

Page Header

Page

4

30/01/2026

F IXED-LENGTH RECORDS

Fixed-length records = record lengths are fixed and field lengths are consistent

5

Page Header

C D

A

Free Space

E

B

C D

A

Free Space

E

Header

Packed Records: no gaps
between records, record ID

is location in page

Unpacked Records: allow gaps
between records, use a bitmap to

keep track of where the gaps are

5

VARIABLE-LENGTH RECORDS

Variable-length records may not have fixed & consistent field lengths

We can store variable length length records with an array of field offsets:

Each record contains a record header

Variable length fields are placed after fixed length fields

Record header stores field offset (where variable length field ends)

6

MHeader 42 1234 Jones Edinburgh

CHAR INT INT VARCHAR VARCHAR

6

QUESTION 1

Record header size = ???

Min record size = ???

Max record size = ???

7

CREATE TABLE Customer (
 customer_id INTEGER PRIMARY KEY,
 age INTEGER NOT NULL,
 name VARCHAR(10) NOT NULL,
 address VARCHAR(20) NOT NULL
)

Consider the following relation:

Assume record header stores only pointers (4B) to variable-length fields

7

QUESTION 1, PART 2

Record header size = 8

Min record size = 16

Max record size = 46

8

CREATE TABLE Customer (
 customer_id INTEGER PRIMARY KEY,
 age INTEGER NOT NULL,
 name VARCHAR(10) NOT NULL,
 address VARCHAR(20) NOT NULL
)

Consider the following relation:

Assume record header stores only pointers (4B) to variable-length fields

1234 42 Jones 10 Crichton St.

INT INT VARCHAR(10) VARCHAR(20)HEADER

8

30/01/2026

SLOTTED PAGES

Most common layout scheme is called slotted pages

Slot directory maps “slots” to the
records’ starting position offsets

Record ID = (page ID, slot ID)

Header keeps track of:
The number of used slots

The offset of the last slot used

Records stored at the end of page

9

Header

Record A

Record C

Record B

Record D

Fixed/Var-length records

Slot directory

9

QUESTION 2
Suppose the Customer relation is stored
using a slotted page layout

Page header stores the number of records
and a pointer to free space

Directory slot stores a pointer and length

Page size is 8KB

Max number of records = ???

1010

= 3 20

Record A

Record C

Record B

39 36

1234 42 Jones 10 Crichton St.

INT INT VARCHAR(10) VARCHAR(20)HEADER

10

QUESTION 2, PART 2
Suppose the Customer relation is stored
using a slotted page layout

Page header stores the number of records
and a pointer to free space (4B + 4B)

Directory slot stores a pointer and length (4B + 4B)

Page size is 8KB

Max number of records
 = (page size – header size) / (min record size + slot size)

 = (8192 – 8) / (16 + 8) = 341 records

11

= 3 20

Record A

Record C

Record B

39 36

1234 42 Jones 10 Crichton St.

INT INT VARCHAR(10) VARCHAR(20)HEADER

11

BUFFER MANAGEMENT

12

12

30/01/2026

BUFFER MANAGER

Layer that manages which pages are loaded in memory

Controls when pages are read from & written to disk

When no space in memory, decides what page to evict

Decision process is the page replacement policy

Big impact on I/Os depending on access pattern

Common policies:

LRU (Least Recently Used)

MRU (Most Recently Used)

Clock

13

Page1

HeaderDirectory

Page2

Header

Page2

HeaderDirectory

Database File

Disk

Buffer Pool

Memory

13

QUESTION 3
Page access sequence:

 A B C D E B A D C A E C

Most Recently Used (MRU)
Buffer hits = ???

14

Buffer Pool

14

QUESTION 3 – AFTER 4 REQUESTS

Page access sequence:

 A B C D E B A D C A E C

Most Recently Used (MRU)
Buffer hits = 0

A (miss), B (miss), C (miss), D (miss), E (miss, D out), B (hit), A (hit),

D (miss, A out), C (hit), A (miss, C out), E (hit), C (miss, E out)

15

Buffer Pool

B C DA

15

QUESTION 3 – AFTER 7 REQUESTS

Page access sequence:

 A B C D E B A D C A E C

Most Recently Used (MRU)
Buffer hits = 2

A (miss), B (miss), C (miss), D (miss), E (miss, D out), B (hit), A (hit),

D (miss, A out), C (hit), A (miss, C out), E (hit), C (miss, E out)

16

Buffer Pool

B C EA

16

30/01/2026

QUESTION 3 – AFTER 10 REQUESTS

Page access sequence:

 A B C D E B A D C A E C

Most Recently Used (MRU)
Buffer hits = 3

A (miss), B (miss), C (miss), D (miss), E (miss, D out), B (hit), A (hit),

D (miss, A out), C (hit), A (miss, C out), E (hit), C (miss, E out)

17

Buffer Pool

B C ED

17

QUESTION 3 – AFTER 12 REQUESTS

Page access sequence:

 A B C D E B A D C A E C

Most Recently Used (MRU)
Buffer hits = 4

A (miss), B (miss), C (miss), D (miss), E (miss, D out), B (hit), A (hit),

D (miss, A out), C (hit), A (miss, C out), E (hit), C (miss, E out)

18

Buffer Pool

B A CD

18

CLOCK

Efficient approximation of LRU

Arrange frames in a circle (like numbers on a clock)

Advance clock hand around the clock to find pages to evict
Only do this if you need to evict a page

To make this approximate least recently used (rather than least recently
loaded): add a reference bit to each frame

Set to 1 on load/hit, 0 if clock hand passes the frame and the frame is unpinned

Evict unpinned frame if clock hand reaches it and bit = 0

(bit = 0 means less recently used than those with bit = 1)

19

BF

CE

D

A

ref=1

ref=1

ref=1

ref=0

ref=1

ref=1

19

QUESTION 4
Page access sequence:

 A B C D E B A D C A E C

Assume pages are immediately unpinned
after being pinned

20

A

D

C

B

ref=0

ref=0

ref=0 ref=0

Buffer hits = ???

20

30/01/2026

QUESTION 4, PART 2
Page access sequence:

 A B C D E B A D C A E C

Pages A, B, C, D populate the buffer pool

The clock hand stays still

21

A

D

C

B

ref=1

ref=1

ref=1 ref=1

Buffer hits (so far) = 0

21

QUESTION 4, PART 3
Page access sequence:

 A B C D E B A D C A E C

Page E not present ⇒ buffer miss!

Find first frame with ref = 0

If ref = 1, unset it and move the hand

22

Buffer hits (so far) = 0

A

D

C

B

ref=1

ref=1

ref=1 ref=1

22

QUESTION 4, PART 4
Page access sequence:

 A B C D E B A D C A E C

Resets bits of A, B, C, D while moving the hand

First frame with ref = 0 holds A

23

A

D

C

B

ref=0

ref=0

ref=0 ref=0

Buffer hits (so far) = 0

23

QUESTION 4, PART 5
Page access sequence:

 A B C D E B A D C A E C

Resets bits of A, B, C, D while moving the hand

First frame with ref = 0 holds A

Replace A with E, set reference bit, move the hand

24

E

D

C

B

ref=0

ref=1

ref=0 ref=0

Buffer hits (so far) = 0

24

30/01/2026

QUESTION 4, PART 6
Page access sequence:

 A B C D E B A D C A E C

Page B is present ⇒ buffer hit!

Set refence bit

25

E

D

C

B

ref=0

ref=1

ref=0 ref=1

Buffer hits (so far) = 1

25

QUESTION 4, PART 7
Page access sequence:

 A B C D E B A D C A E C

Page A not present ⇒ buffer miss!

26

E

D

C

B

ref=0

ref=1

ref=0 ref=1

Buffer hits (so far) = 1

26

QUESTION 4, PART 8
Page access sequence:

 A B C D E B A D C A E C

Page A not present ⇒ buffer miss!

Unset refence bit for B, move the hand

27

E

D

C

B

ref=0

ref=1

ref=0 ref=0

Buffer hits (so far) = 1

27

QUESTION 4, PART 9
Page access sequence:

 A B C D E B A D C A E C

Page A not present ⇒ buffer miss!

Unset refence bit for B, move the hand

Replace C with A, set refence bit, move the hand

28

E

D

A

B

ref=1

ref=1

ref=0 ref=0

Buffer hits (so far) = 1

28

30/01/2026

QUESTION 4, PART 10
Page access sequence:

 A B C D E B A D C A E C

Page D is present ⇒ buffer hit!

Set refence bit

29

E

D

A

B

ref=1

ref=1

ref=1 ref=0

Buffer hits (so far) = 2

29

QUESTION 4, PART 11
Page access sequence:

 A B C D E B A D C A E C

Page C is not present ⇒ buffer miss!

30

E

D

A

B

ref=1

ref=1

ref=1 ref=0

Buffer hits (so far) = 2

30

QUESTION 4, PART 12
Page access sequence:

 A B C D E B A D C A E C

Page C is not present ⇒ buffer miss!

Unset ref bits for D & E, move the hand to B

31

E

D

A

B

ref=1

ref=0

ref=0 ref=0

Buffer hits (so far) = 2

31

QUESTION 4, PART 13
Page access sequence:

 A B C D E B A D C A E C

Page C is not present ⇒ buffer miss!

Unset ref bits for D & E, move the hand to B

Replace B with C, set refence bit, move the hand

32

E

D

A

C

ref=1

ref=0

ref=0 ref=1

Buffer hits (so far) = 2

32

30/01/2026

QUESTION 4, PART 14
Page access sequence:

 A B C D E B A D C A E C

Pages A, E, C are present ⇒ buffer hits!

33

E

D

A

C

ref=1

ref=0

ref=0 ref=1

Buffer hits (so far) = 2

33

QUESTION 4, PART 15
Page access sequence:

 A B C D E B A D C A E C

Pages A, E, C are present ⇒ buffer hits!

Set their reference bits

34

E

D

A

C

ref=1

ref=1

ref=0 ref=1

Buffer hits = 5

34

POSTGRESQL – BUFFER POOL DEMO

Purpose
What the PostgreSQL buffer pool (shared_buffers) is
How sequential scans use a ring buffer to avoid cache pollution
How index-based access uses the normal buffer pool

Key ideas
PostgreSQL stores data in 8 KB pages
Pages are cached in shared_buffers
Different access patterns use the cache differently

Try it out
buffer_demo.sql is available on Learn à Practice Worksheets
Requires PostgreSQL installed locally

Run the script step by step and observe buffer behaviour

35

35

POSTGRESQL – SLOTTED PAGES DEMO

Purpose
How tables are stored as slotted pages

How inserts/deletes create dead space

How VACUUM and VACUUM FULL reclaim space

Key ideas
Pages contain headers, pointers, tuples, and free space

Dead tuples persist until cleaned

Try it out
page_demo.sql is available on Learn à Practice Worksheets

Run the script step by step and observe space usage before and after VACUUM

36

36

