Y- of EDINBURGH

Advanced Database Systems
Spring 2026

Q&A Session 1

If you require this document in an alternative format, such as large print or a coloured background, please contact milos.nikolic@ed.ac.uk

ADMINISTRIVIA

Coursework was released last week
Start early - several things you can already begin working on

Ask questions on Piazza

Q&A sessions
Like office hours
You can ask questions about material & provide feedback

Each Q&A session includes a practice worksheet available on Learn

FILES, PAGES, RECORDS

Tables stored as logical files consisting of pages, each containing a
collection of records

File (corresponds to a table)
Page (many per file)
Record (many per page)

The unit of access to physical disk is the page
11/0 =read or write 1 page

PAGE BASICS

The page header keeps track of the records in the page

The page header may contain fields such as:

Number of records in the page Page Header

Pointer to segment of free space in the page

Bitmap indicating which parts of the page are in use

Page

FIXED-LENGTH RECORDS

Fixed-length records = record lengths are fixed and field lengths are consistent

Packed Records: no gaps Unpacked Records: allow gaps
between records, record ID between records, use a bitmap to
is location in page keep track of where the gaps are

Header [X] IX[X[xX[T T]| A o—

Page Header A —

Free Space

Free Space

VARIABLE-LENGTH RECORDS

Variable-length records may not have fixed & consistent field lengths

We can store variable length length records with an array of field offsets:

CHAR

INT

INT VARCHAR VARCHAR

Header

M

42

Each record contains a record header

1234 Jones Edinburgh

Variable length fields are placed after fixed length fields

Record header stores field offset (where variable length field ends)

QUESTION 1

Consider the following relation:

Assume record header stores only pointers (4B) to variable-length fields

CREATE TABLE Customer (
customer_id INTEGER PRIMARY KEY,
age INTEGER NOT NULL,
name VARCHAR(10) NOT NULL,
address VARCHAR(20) NOT NULL

)

Record header size = ??7?
Min record size = ??7?

Max record size = ?7?

QUESTION 1, PART 2

Consider the following relation:

Assume record header stores only pointers (4B) to variable-length fields

CREATE TABLE Customer (

age INTEGER NOT NULL,

)

name VARCHAR(10) NOT NULL,
address VARCHAR(20) NOT NULL

customer_id INTEGER PRIMARY KEY,

HEADER INT

INT

VARCHAR(10)

1K 1234

42

Jones

Record header size = 8
Min record size =16

Max record size = 46

VARCHAR(20)

10 Crichton St.

SLOTTED PAGES

Most common layout scheme is called slotted pages

Slot directory maps “slots” to the Slot directory
records’ starting position offsets

Header
Record ID = (page ID, slot ID)

Header keeps track of:

The number of used slots

Record C
The offset of the last slot used

Record D

Record B Record A
Records stored at the end of page ' .

Fixed/Var-length records

QUESTION 2

Suppose the Customer relation is stored
using a slotted page layout

Page header stores the number of records
and a pointer to free space

Directory slot stores a pointer and length

Page size is 8KB Record C

Record B Record A

Max number of records = ?7?

-~ \
’J-I-EA’DER INT INT VARCHAR(10) VARCHAR(20) ‘\

gl gl | 1234 | 42

QUESTION 2, PART 2

Suppose the Customer relation is stored
using a slotted page layout

Page header stores the number of records
and a pointer to free space (4B + 4B)

Directory slot stores a pointer and length (4B + 4B)

Page size is 8KB Record C

Record B Record A

Max number of records

= (page size - header size) / (min record size + slot size) \

=(8192-8)/ (16 + 8) = 341 records ’HEAE)’EFE/ INT INT VARCHAR(10) VARCHAR(0) “‘\

gl gl | 1234 | 42

BUFFER MANAGEMENT

12

13

BUFFER MANAGER

Layer that manages which pages are loaded in memory

Controls when pages are read from & written to disk

Buffer Pool
When no space in memory, decides what page to evict R
Header i i
Decision process is the page replacement policy — | i
Big impact on I/Os depending on access pattern L "7 |
.. Memory
common policies: == ==- t t- e
Disk
LRU (Least Recently Used)
Header Header
MRU (Most Recently Used) [T 1]
[LT]
Clock

Database File

14

QUESTION 3

Page access sequence: Buffer Pool

ABCDEBADCAELC

Most Recently Used (MRU)

Buffer hits = ??7?

QUESTION 3 - AFTER 4 REQUESTS

Page access sequence:

ABCDEBADC CAEC

1

Most Recently Used (MRU)
Buffer hits=0

A (miss), B (miss), C (miss), D (miss)

Buffer Pool

"

16

QUESTION 3 - AFTER 7 REQUESTS

Buffer Pool

'

Page access sequence:

ABCDEBADCAEC

1

Most Recently Used (MRU)

Buffer hits =2
A (miss), B (miss), C (miss), D (miss), E (miss, D out), B (hit), A (hit)

17

QUESTION 3 - AFTER 10 REQUESTS

Buffer Pool

"

Page access sequence:

ABCDEBADCAEC

1

Most Recently Used (MRU)

Buffer hits =3
A (miss), B (miss), C (miss), D (miss), E (miss, D out), B (hit), A (hit),
D (miss, A out), C (hit)

18

QUESTION 3 - AFTER 12 REQUESTS

Buffer Pool

"

Page access sequence:

ABCDEBADCAEC

1

Most Recently Used (MRU)

Buffer hits = 4
A (miss), B (miss), C (miss), D (miss), E (miss, D out), B (hit), A (hit),
D (miss, A out), C (hit), A (miss, C out), E (hit), C (miss, E out)

ref=1

CLOCK

/ ™~
ref=1 ref=1
Efficient approximation of LRU (a l
Arrange frames in a circle (like numbers on a clock) ref=1 ref=1
| | n/
Advance clock hand around the clock to find pages to evict

ref=0

Only do this if you need to evict a page

To make this approximate least recently used (rather than least recently
loaded): add a reference bit to each frame

Set to 1 on load/hit, O if clock hand passes the frame and the frame is unpinned
Evict unpinned frame if clock hand reaches it and bit=0

(bit = 0 means less recently used than those with bit = 1)

QUESTION 4

Page access sequence:

ABCDEBADCAELC

Assume pages are immediately unpinned
after being pinned

Buffer hits = 7?7?

20

ref=0

ref=0 I ref=0

~
/

4
_

ref=0

QUESTION 4, PART 2

Page access sequence:

EBADCAEC

1

Pages A, B, C, D populate the buffer pool
The clock hand stays still

Buffer hits (so far) =0

21

QUESTION 4, PART 3

Page access sequence:

EBADCAEC

1

Page E not present = buffer miss!
Find first frame with ref =0

If ref =1, unset it and move the hand

Buffer hits (so far) =0

22

QUESTION 4, PART 4

Page access sequence:

EBADCAEC

1

Resets bits of A, B, C, D while moving the hand
First frame with ref =0 holds A

Buffer hits (so far) =0

23

QUESTION 4, PART 5

Page access sequence:

BADCAEZC

1

Resets bits of A, B, C, D while moving the hand
First frame with ref =0 holds A

Replace A with E, set reference bit, move the hand

Buffer hits (so far) =0

24

QUESTION 4, PART 6

Page access sequence:

ADCAEC

1

Page B is present = buffer hit!

Set refence bit

Buffer hits (so far) = 1

25

QUESTION 4, PART 7

Page access sequence:

ADCAEC

1

Page A not present = buffer miss!

Buffer hits (so far) = 1

26

QUESTION 4, PART 8

Page access sequence:

ADCAEC

1

Page A not present = buffer miss!

Unset refence bit for B, move the hand

Buffer hits (so far) = 1

27

QUESTION 4, PART 9

Page access sequence:

DCAEC

1

Page A not present = buffer miss!
Unset refence bit for B, move the hand

Replace C with A, set refence bit, move the hand

Buffer hits (so far) = 1

28

QUESTION 4, PART 10

Page access sequence:

CAEC

1

Page D is present = buffer hit!

Set refence bit

Buffer hits (so far) = 2

29

QUESTION 4, PART 11

Page access sequence:

CAEC

1

Page Cis not present = buffer miss!

Buffer hits (so far) = 2

30

QUESTION 4, PART 12

Page access sequence:

CAEC

1

Page Cis not present = buffer miss!
Unset ref bits for D & E, move the hand to B

Buffer hits (so far) = 2

31

QUESTION 4, PART 13

Page access sequence:

AEC

1

Page Cis not present = buffer miss!
Unset ref bits for D & E, move the hand to B

Replace B with C, set refence bit, move the hand

Buffer hits (so far) = 2

32

QUESTION 4, PART 14

Page access sequence:

AEC

1

Pages A, E, C are present = buffer hits!

Buffer hits (so far) = 2

33

QUESTION 4, PART 15

Page access sequence:

1

Pages A, E, C are present = buffer hits!

Set their reference bits

Buffer hits =5

34

POSTGRESQL - BUFFER PooL DEMO

Purpose
What the PostgreSQL buffer pool (shared_buffers) is
How sequential scans use a ring buffer to avoid cache pollution
How index-based access uses the normal buffer pool

Key ideas
PostgreSQL stores data in 8 KB pages
Pages are cached in shared_buffers
Different access patterns use the cache differently

Try it out
buffer_demo.sql is available on Learn = Practice Worksheets
Requires PostgreSQL installed locally
Run the script step by step and observe buffer behaviour

35

POSTGRESQL - SLOTTED PAGES DEMO

Purpose

How tables are stored as slotted pages
How inserts/deletes create dead space
How VACUUM and VACUUM FULL reclaim space

Key ideas
Pages contain headers, pointers, tuples, and free space
Dead tuples persist until cleaned

Try it out

page_demo.sql is available on Learn = Practice Worksheets
Run the script step by step and observe space usage before and after VACUUM

36

	Slide 1
	Slide 2: Administrivia
	Slide 3: Files, Pages, Records
	Slide 4: Page Basics
	Slide 5: Fixed-Length Records
	Slide 6: Variable-Length Records
	Slide 7: Question 1
	Slide 8: Question 1, Part 2
	Slide 9: Slotted Pages
	Slide 10: Question 2
	Slide 11: Question 2, Part 2
	Slide 12: Buffer Management
	Slide 13: Buffer Manager
	Slide 14: Question 3
	Slide 15: Question 3 – After 4 Requests
	Slide 16: Question 3 – After 7 Requests
	Slide 17: Question 3 – After 10 Requests
	Slide 18: Question 3 – After 12 Requests
	Slide 19: Clock
	Slide 20: Question 4
	Slide 21: Question 4, Part 2
	Slide 22: Question 4, Part 3
	Slide 23: Question 4, Part 4
	Slide 24: Question 4, Part 5
	Slide 25: Question 4, Part 6
	Slide 26: Question 4, Part 7
	Slide 27: Question 4, Part 8
	Slide 28: Question 4, Part 9
	Slide 29: Question 4, Part 10
	Slide 30: Question 4, Part 11
	Slide 31: Question 4, Part 12
	Slide 32: Question 4, Part 13
	Slide 33: Question 4, Part 14
	Slide 34: Question 4, Part 15
	Slide 35: PostgreSQL – Buffer Pool Demo
	Slide 36: PostgreSQL – Slotted Pages Demo

