
Advanced Database Systems
Spring 2026

Q&A Session 1

If you require this document in an alternative format, such as large print or a coloured background, please contact milos.nikolic@ed.ac.uk

ADMINISTRIVIA

Coursework was released last week

Start early – several things you can already begin working on

Ask questions on Piazza

Q&A sessions

Like office hours

You can ask questions about material & provide feedback

Each Q&A session includes a practice worksheet available on Learn

2

FILES, PAGES, RECORDS

Tables stored as logical files consisting of pages, each containing a

collection of records

File (corresponds to a table)

 Page (many per file)

 Record (many per page)

The unit of access to physical disk is the page

1 I/O = read or write 1 page

3

PAGE BASICS

The page header keeps track of the records in the page

The page header may contain fields such as:

Number of records in the page

Pointer to segment of free space in the page

Bitmap indicating which parts of the page are in use

4

Page Header

Page

FIXED-LENGTH RECORDS

Fixed-length records = record lengths are fixed and field lengths are consistent

5

Page Header

C D

A

Free Space

E

B

C D

A

Free Space

E

Header

Packed Records: no gaps

between records, record ID

is location in page

Unpacked Records: allow gaps

between records, use a bitmap to

keep track of where the gaps are

VARIABLE-LENGTH RECORDS

Variable-length records may not have fixed & consistent field lengths

We can store variable length length records with an array of field offsets:

Each record contains a record header

Variable length fields are placed after fixed length fields

Record header stores field offset (where variable length field ends)

6

MHeader 42 1234 Jones Edinburgh

CHAR INT INT VARCHAR VARCHAR

QUESTION 1

Record header size = ???

Min record size = ???

Max record size = ???

7

CREATE TABLE Customer (

 customer_id INTEGER PRIMARY KEY,

 age INTEGER NOT NULL,

 name VARCHAR(10) NOT NULL,

 address VARCHAR(20) NOT NULL

)

Consider the following relation:

Assume record header stores only pointers (4B) to variable-length fields

QUESTION 1, PART 2

Record header size = 8

Min record size = 16

Max record size = 46

8

CREATE TABLE Customer (

 customer_id INTEGER PRIMARY KEY,

 age INTEGER NOT NULL,

 name VARCHAR(10) NOT NULL,

 address VARCHAR(20) NOT NULL

)

Consider the following relation:

Assume record header stores only pointers (4B) to variable-length fields

1234 42 Jones 10 Crichton St.

INT INT VARCHAR(10) VARCHAR(20)HEADER

SLOTTED PAGES

Most common layout scheme is called slotted pages

Slot directory maps “slots” to the

records’ starting position offsets

Record ID = (page ID, slot ID)

Header keeps track of:

The number of used slots

The offset of the last slot used

Records stored at the end of page

9

Header

Record A

Record C

Record B

Record D

Fixed/Var-length records

Slot directory

QUESTION 2

Suppose the Customer relation is stored

using a slotted page layout

Page header stores the number of records

and a pointer to free space

Directory slot stores a pointer and length

Page size is 8KB

Max number of records = ???

1010

= 3 20

Record A

Record C

Record B

39 36

1234 42 Jones 10 Crichton St.

INT INT VARCHAR(10) VARCHAR(20)HEADER

QUESTION 2, PART 2

Suppose the Customer relation is stored

using a slotted page layout

Page header stores the number of records

and a pointer to free space (4B + 4B)

Directory slot stores a pointer and length (4B + 4B)

Page size is 8KB

Max number of records

 = (page size – header size) / (min record size + slot size)

 = (8192 – 8) / (16 + 8) = 341 records

11

= 3 20

Record A

Record C

Record B

39 36

1234 42 Jones 10 Crichton St.

INT INT VARCHAR(10) VARCHAR(20)HEADER

BUFFER MANAGEMENT

12

BUFFER MANAGER

Layer that manages which pages are loaded in memory

Controls when pages are read from & written to disk

When no space in memory, decides what page to evict

Decision process is the page replacement policy

Big impact on I/Os depending on access pattern

Common policies:

LRU (Least Recently Used)

MRU (Most Recently Used)

Clock

13

Page1

HeaderDirectory

Page2

Header

Page2

HeaderDirectory

Database File

Disk

Buffer Pool

Memory

QUESTION 3

Page access sequence:

 A B C D E B A D C A E C

Most Recently Used (MRU)

Buffer hits = ???

14

Buffer Pool

QUESTION 3 – AFTER 4 REQUESTS

Page access sequence:

 A B C D E B A D C A E C

Most Recently Used (MRU)

Buffer hits = 0

A (miss), B (miss), C (miss), D (miss), E (miss, D out), B (hit), A (hit),

D (miss, A out), C (hit), A (miss, C out), E (hit), C (miss, E out)

15

Buffer Pool

B C DA

QUESTION 3 – AFTER 7 REQUESTS

Page access sequence:

 A B C D E B A D C A E C

Most Recently Used (MRU)

Buffer hits = 2

A (miss), B (miss), C (miss), D (miss), E (miss, D out), B (hit), A (hit),

D (miss, A out), C (hit), A (miss, C out), E (hit), C (miss, E out)

16

Buffer Pool

B C EA

QUESTION 3 – AFTER 10 REQUESTS

Page access sequence:

 A B C D E B A D C A E C

Most Recently Used (MRU)

Buffer hits = 3

A (miss), B (miss), C (miss), D (miss), E (miss, D out), B (hit), A (hit),

D (miss, A out), C (hit), A (miss, C out), E (hit), C (miss, E out)

17

Buffer Pool

B C ED

QUESTION 3 – AFTER 12 REQUESTS

Page access sequence:

 A B C D E B A D C A E C

Most Recently Used (MRU)

Buffer hits = 4

A (miss), B (miss), C (miss), D (miss), E (miss, D out), B (hit), A (hit),

D (miss, A out), C (hit), A (miss, C out), E (hit), C (miss, E out)

18

Buffer Pool

B A CD

CLOCK

Efficient approximation of LRU

Arrange frames in a circle (like numbers on a clock)

Advance clock hand around the clock to find pages to evict

Only do this if you need to evict a page

To make this approximate least recently used (rather than least recently

loaded): add a reference bit to each frame

Set to 1 on load/hit, 0 if clock hand passes the frame and the frame is unpinned

Evict unpinned frame if clock hand reaches it and bit = 0

(bit = 0 means less recently used than those with bit = 1)

19

BF

CE

D

A

ref=1

ref=1

ref=1

ref=0

ref=1

ref=1

QUESTION 4

Page access sequence:

 A B C D E B A D C A E C

Assume pages are immediately unpinned

after being pinned

20

A

D

C

B

ref=0

ref=0

ref=0 ref=0

Buffer hits = ???

QUESTION 4, PART 2

Page access sequence:

 A B C D E B A D C A E C

Pages A, B, C, D populate the buffer pool

The clock hand stays still

21

A

D

C

B

ref=1

ref=1

ref=1 ref=1

Buffer hits (so far) = 0

QUESTION 4, PART 3

Page access sequence:

 A B C D E B A D C A E C

Page E not present ⇒ buffer miss!

Find first frame with ref = 0

If ref = 1, unset it and move the hand

22

Buffer hits (so far) = 0

A

D

C

B

ref=1

ref=1

ref=1 ref=1

QUESTION 4, PART 4

Page access sequence:

 A B C D E B A D C A E C

Resets bits of A, B, C, D while moving the hand

First frame with ref = 0 holds A

23

A

D

C

B

ref=0

ref=0

ref=0 ref=0

Buffer hits (so far) = 0

QUESTION 4, PART 5

Page access sequence:

 A B C D E B A D C A E C

Resets bits of A, B, C, D while moving the hand

First frame with ref = 0 holds A

Replace A with E, set reference bit, move the hand

24

E

D

C

B

ref=0

ref=1

ref=0 ref=0

Buffer hits (so far) = 0

QUESTION 4, PART 6

Page access sequence:

 A B C D E B A D C A E C

Page B is present ⇒ buffer hit!

Set refence bit

25

E

D

C

B

ref=0

ref=1

ref=0 ref=1

Buffer hits (so far) = 1

QUESTION 4, PART 7

Page access sequence:

 A B C D E B A D C A E C

Page A not present ⇒ buffer miss!

26

E

D

C

B

ref=0

ref=1

ref=0 ref=1

Buffer hits (so far) = 1

QUESTION 4, PART 8

Page access sequence:

 A B C D E B A D C A E C

Page A not present ⇒ buffer miss!

Unset refence bit for B, move the hand

27

E

D

C

B

ref=0

ref=1

ref=0 ref=0

Buffer hits (so far) = 1

QUESTION 4, PART 9

Page access sequence:

 A B C D E B A D C A E C

Page A not present ⇒ buffer miss!

Unset refence bit for B, move the hand

Replace C with A, set refence bit, move the hand

28

E

D

A

B

ref=1

ref=1

ref=0 ref=0

Buffer hits (so far) = 1

QUESTION 4, PART 10

Page access sequence:

 A B C D E B A D C A E C

Page D is present ⇒ buffer hit!

Set refence bit

29

E

D

A

B

ref=1

ref=1

ref=1 ref=0

Buffer hits (so far) = 2

QUESTION 4, PART 11

Page access sequence:

 A B C D E B A D C A E C

Page C is not present ⇒ buffer miss!

30

E

D

A

B

ref=1

ref=1

ref=1 ref=0

Buffer hits (so far) = 2

QUESTION 4, PART 12

Page access sequence:

 A B C D E B A D C A E C

Page C is not present ⇒ buffer miss!

Unset ref bits for D & E, move the hand to B

31

E

D

A

B

ref=1

ref=0

ref=0 ref=0

Buffer hits (so far) = 2

QUESTION 4, PART 13

Page access sequence:

 A B C D E B A D C A E C

Page C is not present ⇒ buffer miss!

Unset ref bits for D & E, move the hand to B

Replace B with C, set refence bit, move the hand

32

E

D

A

C

ref=1

ref=0

ref=0 ref=1

Buffer hits (so far) = 2

QUESTION 4, PART 14

Page access sequence:

 A B C D E B A D C A E C

Pages A, E, C are present ⇒ buffer hits!

33

E

D

A

C

ref=1

ref=0

ref=0 ref=1

Buffer hits (so far) = 2

QUESTION 4, PART 15

Page access sequence:

 A B C D E B A D C A E C

Pages A, E, C are present ⇒ buffer hits!

Set their reference bits

34

E

D

A

C

ref=1

ref=1

ref=0 ref=1

Buffer hits = 5

POSTGRESQL – BUFFER POOL DEMO

Purpose

What the PostgreSQL buffer pool (shared_buffers) is

How sequential scans use a ring buffer to avoid cache pollution

How index-based access uses the normal buffer pool

Key ideas

PostgreSQL stores data in 8 KB pages

Pages are cached in shared_buffers

Different access patterns use the cache differently

Try it out

buffer_demo.sql is available on Learn → Practice Worksheets

Requires PostgreSQL installed locally

Run the script step by step and observe buffer behaviour

35

POSTGRESQL – SLOTTED PAGES DEMO

Purpose

How tables are stored as slotted pages

How inserts/deletes create dead space

How VACUUM and VACUUM FULL reclaim space

Key ideas

Pages contain headers, pointers, tuples, and free space

Dead tuples persist until cleaned

Try it out

page_demo.sql is available on Learn → Practice Worksheets

Run the script step by step and observe space usage before and after VACUUM

36

	Slide 1
	Slide 2: Administrivia
	Slide 3: Files, Pages, Records
	Slide 4: Page Basics
	Slide 5: Fixed-Length Records
	Slide 6: Variable-Length Records
	Slide 7: Question 1
	Slide 8: Question 1, Part 2
	Slide 9: Slotted Pages
	Slide 10: Question 2
	Slide 11: Question 2, Part 2
	Slide 12: Buffer Management
	Slide 13: Buffer Manager
	Slide 14: Question 3
	Slide 15: Question 3 – After 4 Requests
	Slide 16: Question 3 – After 7 Requests
	Slide 17: Question 3 – After 10 Requests
	Slide 18: Question 3 – After 12 Requests
	Slide 19: Clock
	Slide 20: Question 4
	Slide 21: Question 4, Part 2
	Slide 22: Question 4, Part 3
	Slide 23: Question 4, Part 4
	Slide 24: Question 4, Part 5
	Slide 25: Question 4, Part 6
	Slide 26: Question 4, Part 7
	Slide 27: Question 4, Part 8
	Slide 28: Question 4, Part 9
	Slide 29: Question 4, Part 10
	Slide 30: Question 4, Part 11
	Slide 31: Question 4, Part 12
	Slide 32: Question 4, Part 13
	Slide 33: Question 4, Part 14
	Slide 34: Question 4, Part 15
	Slide 35: PostgreSQL – Buffer Pool Demo
	Slide 36: PostgreSQL – Slotted Pages Demo

