
1

ClickHouse – A Modern Analytical Database

1 Apr, 2024
Robert Schulze

2

Agenda

• Introduction and Background

• Storage Layer

• Query Layer

3

Introduction and Background

4

Who Am I?

• Robert Schulze

• Senior Software Engineer @ClickHouse Inc., previously at
SAP and Dresden University of Technology, Germany

• Focus on query processing, text indexing, vector search

• Supervising student theses (BSc, MSc) and interns (link)

https://xkcd.com/327

https://github.com/ClickHouse/ClickHouse/issues/58394

5

What is ClickHouse?

• An analytical (workload), relational (data
model), columnar (data organisation),
shared-nothing (architecture) database with
eventual consistency (consistency model).

• Goal: super-fast 🚀 and scalable analytics
over tables with trillions of rows and
hundreds of columns.

• Open source (Apache 2.0), built in C++, runs
on anything from Raspberry Pi to clusters
with hundreds of nodes.

• Self-managed (on-premises) or ClickHouse
Cloud, a database-as-a-service (DBaaS) https://github.com/ClickHouse/ClickHouse

6

ClickHouse History

7

8

What is an Analytical Database?

OLAP (Online Analytical
Processing)

OLTP (Online
Transactional

Processing)

Workload Short-running point queries Long-running batch queries

Data Volumes Moderate (GB – TB) Huge (TB – PB)

Emphasis Data integrity and correctness Scalability and performance

Data Organization Row-wise Column-wise

Use Cases Enterprise Resource Planning (ERP) “Big data” and decision making, e.g.
dashboards and ad-hoc data exploration

Examples

HTAP (Hybrid Transactional
Analytical Processing)

9

Row-wise vs. Column-wise
Data Organisation

Country Product Sales

GB Lambda 350

FR Kappa 400

US Iota 1300

Row 1
GB

Lambda

350

Row 3
FR

Kappa

400

Row 4
US

Iota

1300

Column 1
GB

FR

US

Column 2
Lambda

Kappa

Iota

Column 3
350

400

1300

Row-wise
(n-ary storage
model, NSM)

Columnar
(decompositional

storage model, DSM)

Compressability Moderate High (data of same type
clustered together)

Best suited for Single-row operations Full-column scans,
aggregation[A. Ailamaki et. al.: Weaving

Relations
for Cache Performance. 2001]

Hybrid
(PAX)

10

System Architecture

11

Storage Layer

12

[P. O'Neil et. al.: The Log-Structured
Merge-Tree (LSM-Tree), 1996]

Incoming writes Memtable

…

Memory Disk

Sorted String
Table (SST)

Sorted and immutable

Sort &
Flush

Recent data

Past data

[F. Chang et. al.: Bigtable: A
Distributed Storage System for

Structured Data, 2006]Log-Structured Merge (LSM) Trees

13

LSM Trees: Updates and Deletes

Update

Memory Disk

x = 2

Sorted String Tables

[…]

x = 2 […]x = 3 […]

x = 3

Delete

x = 2 […]

x = 2 […]x - […]

x: -

tombstone

14

LSM Trees: Compaction

Level 0
(memtable)

Level 1

Level 2

[…]

Compaction Strategies

• When? level saturation, file size, file
age, file “temperature” …

• What? individual SSTs, entire levels, …

• …

Compact and merge
(k-way sort merge)

[S. Sakar et. al.:
Constructing and Analyzing

the LSM Compaction
Design Space, 2022]

15

LSM-Tree-Based Storage in ClickHouse

• INSERTs create an immutable part
(aka. SST).

• INSERTs are synchronous (default)
or asynchronous.

• All parts are equal, no levels or
notion of recency.

• Periodic merges, the source parts
are deleted once their reference
count drops to 0.

Example Part (1/2)
• Local (per-part) sorting defined by primary key:

• Part are further divided into granules g0, g1, ...

• Consecutive granules in a column form blocks
which are compressed:

• generic bit codecs: LZ4, zstd, …

• logical codecs: delta, …

• specialised codecs: Gorilla (FP), AES, …

CREATE TABLE page_hits
(

EventTime Date CODEC(Delta,ZSTD),
RegionId String CODEC(LZ4),
URL String CODEC(AES),

)
ENGINE = MergeTree() PRIMARY KEY (EventTime)

Compressed
Block

Compressed
Block

Compressed
Block

Example Part (2/2)

• Primary key defines sorting AND
a sparse primary key index.

• Maps primary key index values to
granules.

• Small enough to reside in DRAM.

• Used to accelerate predicate
evaluation on primary key
columns.

18

Data Pruning (1/3)

Analytical databases deal with tables sizes of many petabytes.

The fastest scan is not scanning at all!

Primary Key

19

Data Pruning (2/3)

Table Projections

• Alternative table versions sorted by a different primary key

• Speed up queries on columns different than primary key columns.

• Work at the granularity of parts. Parts may or may not have projections.

• High space consumption and insert/merge overhead.

[M. Stonebraker et. al.: C-Store: A
Column-oriented DBMS, 2005]

ALTER TABLE hits ADD PROJECTION proj(
SELECT * ORDER BY RegionID

);

ALTER TABLE hits MATERIALIZE PROJECTION pj;

EventTime RegionID URL

2023-10-19 17:03:05.154 EMEA https://...

2023-10-19 17:03:05.462 APAC https://...

2023-10-19 17:03:05.875 AMER https://...

2023-10-19 17:03:06.104 APAC https://...

2023-10-19 17:03:07.550 AMER https://...

EventTime RegionID URL

2023-10-19 17:03:05.875 AMER https://...

2023-10-19 17:03:07.550 AMER https://...

2023-10-19 17:03:06.104 APAC https://...

2023-10-19 17:03:05.462 APAC https://...

2023-10-19 17:03:05.154 EMEA https://...

20

Data Pruning (3/3)

[G. Moerkotte: Small
Materialized Aggregates:

A Light Weight Index
Structure for Data

Warehousing, 1998]

Skipping indexes

• Light-weight alternative to projections

• Store small amounts of metadata at the level of
granules or multiple granules which allows to
skip data during scans

• Skipping index types:

• Minimum/maximum value - great for
loosely sorted data.

• Unique values - great for small
cardinality.

• Bloom filter for row / tokens / n-grams).

clicks

25

8

7

25

25

18

20

22

19

17

8

6

6

13

5

SELECT *
FROM tab
WHERE clicks BETWEEN 15 AND 30;

None match à
skip scan

All match -->
skip scan

Some match à
load & check

min/max
index

min: 7

max: 25

min: 17

max: 22

min: 5

max: 13

21

Merge-time Data Transformation

• Recent data is more relevant than historical data.

• “De-prioritise” old data when parts are merged:

• Aggregation: collapse rows into aggregated rows

• Replacement: replace duplicates in older parts

• Archiving: compress, move, or, delete rows/parts

22

Data Replication (1/2)

Data Replication means to store the same part redundantly across nodes.

• Enables high availability (tolerance against node failures) and load balancing.

Based on notion of table state

= set of table parts + table metadata (e.g. column names/types).

Operations which advance the table state:

• Inserts: Add parts.

• Merges: Add parts + delete parts.

• DDL statements: Add parts + delete parts+ change metadata.

Recorded in global
replication log

23

Data Replication (2/2)

Node 1 Node 2 Node 3

Part A

Part B

INSERT

INSERT

Replication LogKeeper INSERT INSERT MERGE

Part A Part A

Part B
Part Cmerge

Add entry Fetch entry Download part

[D. Ongaro: In Search of an
Understandable Consensus
Algorithm, 2014]

Intra-Keeper
replication
(replication log)
is synchronous

Intra-cluster
replication
(table data) is
asynchronous

24

Query Layer

25

Query Compilation and Optimisation (1/4)

26

Query Compilation and Optimisation (2/4)

Optimisation of AST Example input Example output

• Constant folding concat(lower(‘a’, upper(‘b’)) ‘aB’

• Distributive law sum(2 * x) 2 * sum(x)

• Transform to IN-lists x = c OR x = d x IN (c, d)

• [...]

27

Query Compilation and Optimisation (3/4)

Optimizations of logical plan (e.g. join, scan, aggregate)

• Filter pushdown

• […]

28

Query Compilation and Optimisation (4/4)

Optimisations of physical plan (e.g. hash join, filter evaluation with PK)

Exploit particularities of table engine. E.g. exploit primary key:

• WHERE columns form prefix of primary key columns à replace full scan by PK lookup

• ORDER BY columns form prefix of primary key columns à remove sort operator

• GROUP BY columns form prefix of primary key columns à remove aggregation operator

29

Query Execution and Parallelisation

30

Classical Volcano-style execution

• Evaluate operator tree recursively top-to-leaf, one-tuple-at-a-time.

• Problem 1: Overhead for (virtual) function calls, bad L1/L2/L3 cache locality.

• Problem 2: Not parallelised.

Works for OLTP, unsuitable for OLAP.

Solve problem 1: ”Vector Vulcano” model

• Pass batches of tuples between operators.

• Amortise cost of calling operators, enables SIMD.
[P. Boncz: MonetDB/X100:

Hyper-Pipelining Query
Execution, 2005]

Parallelisation Across Data Chunks (1/2)

31

Parallelisation Across
Data Chunks (2/2)

SELECT RegionID, avg(Latency) AS AvgLatency
FROM hits
WHERE URL = 'https://clickhouse.com'
GROUP BY RegionID
ORDER BY AvgLatency DESC
LIMIT 3

• Solve problem 2: Unfold execution plan
into N lanes (typically 1 lane / core).

• Lanes decompose the data to be
processed into non-overlapping ranges.

• Exchange operators (repartition,
distribute) ensure lanes remain balanced.

filter
aggregation

sort

32

Parallelisation Across Data Elements (1/2)

• Apply the same operation to consecutive data elements.

• Based on compiler auto-vectorisation or manually written intrinsics.

• Compiled into compute kernels which are selected at runtime based based on the
system capabilities (cpuid).

SELECT col1 + col2
FROM tab

if (isArchSupported(TargetArch::AVX512))
implAVX512BW(in1, in2);

else if (isArchSupported(TargetArch::AVX2))
implAVX2(in1, in2, out);

else if (isArchSupported(TargetArch::SSE42))
implSSE42(in1, in2, out);

else
implGeneric(in1, in2, out);

Dispatch code based on cpuid

[J. Zhou: Implementing Database
Operations Using SIMD

Instructions, 2002]

33

Parallelisation Across Data Elements (2/2)
if (isArchSupported(TargetArch::AVX512))

implAVX512BW(in1, in2);
else if (isArchSupported(TargetArch::AVX2))

implAVX2(in1, in2, out);
else if (isArchSupported(TargetArch::SSE42))

implSSE42(in1, in2, out);
else

implGeneric(in1, in2, out);
MULTITARGET_FUNCTION_AVX2_SSE42(
MULTITARGET_FUNCTION_HEADER(),

impl,
MULTITARGET_FUNCTION_BODY((

const double * in1, const double * in2
double * out, size_t num_elements)

{
for (size_t i = 0; i < num_elements; ++i)

*out[i] = *in1[i] + *in2[i];
}))

MULTITARGET_FUNCTION_AVX512F_AVX2_SSE42(
MULTITARGET_FUNCTION_HEADER(),

impl,
MULTITARGET_FUNCTION_BODY((

const double * in1, const double * in2
double * out, size_t num_elements)

{
for (size_t i = 0; i < (sz & ~0x7); i += 8)
{

const __m512d _in1 = _mm512_load_pd(&in1[i]);
const __m512d _in2 = _mm512_load_pd(&in2[i]);
const __m512d _out = _mm512_add_pd(_in1, _in2);
out[i] = (double*)&_out;

}
}))

SELECT col1 + col2
FROM tab

AVX-512 kernel, manually vectorised

AVX2 kernel, compiler auto-vectorised

34

Wrap up

• Looked at LSM-style data organisation, data pruning techniques, and parallel
query execution.

• Practical deployment comes additional “soft” requirements:

• a powerful SQL dialect,

• regular, aggregation and window functions with rich functionality,

• tools for performance introspection and physical database tuning,

• interoperability with other databases and data formats,

• user management and backup

• ClickHouse is open source, development is in the open, contributions are welcome.

