ClickHouse — A Modern Analytical Database

1 Apr, 2024
Robert Schulze

Agenda

Introduction and Background
Storage Layer

Query Layer

Introduction and Background

Who Am I?

Robert Schulze

Senior Software Engineer @ClickHouse Inc., previously at
SAP and Dresden University of Technology, Germany

Focus on query processing, text indexing, vector search

Supervising student theses (BSc, MSc) and interns (link)

HI, THIS 1S

YOUR SON'5 SCHOOL.
WERE HAVING S0ME
(OMPUTER TROUBLE.

\%m

OH, DEAR - DID HE
BREAK SOMETHING?

IN AWAY /

St

¢

DID YOU REALLY
NAME YOUR SON
Robert'); DROP
TABLE Students;-~ 7

~ OH.YES. UTNE
BOBBY TABLES,
WE CALL HIM.

WELL, WEVE LOST THIS
YEAR'S STUDENT RECORDS.
I HOPE YOURE HAPPY.
él AND I H(PE
- YOUVE LEARNED
TO SANMIZE YOUR
DATABASE INPUTS,

[\

https://xkcd.com/327

https://github.com/ClickHouse/ClickHouse/issues/58394

What is ClickHouse?

An analytical (workload), relational (data
model), columnar (data organisation),
shared-nothing (architecture) database with
eventual consistency (consistency model).

Goal: super-fast # and scalable analytics
over tables with trillions of rows and
hundreds of columns.

Open source (Apache 2.0), built in C++, runs
on anything from Raspberry Pi to clusters
with hundreds of nodes.

Self-managed (on-premises) or ClickHouse
Cloud, a database-as-a-service (DBaaS)

30.0k

25.0k

GitHub Stars
N
o
o
=

a
o
x~

10.0k

5.0k

Star History

® (D ClickHouse/ClickHouse
® / apache/druid
3 StarRocks/starrocks
/ apache/pinot
® @ duckdb/duckdb

2020 2022 2024

2 star-history.com

204 20l6 2018
Date

https://github.com/ClickHouse/ClickHouse

ClickHouse History

2009 2012 2016 2017 2018
Q ¢ ? ¢ ?
Start of Open Mutations
development ; source :
Productidn launch First intégration

engine (Kafka)

2019 2020 2021 2022 2023 2024
0 0 0 0 0 0
Improved | ClickHouse Cloud '

introspection tools

New exécution Async fnserts, Column statisfics
framework Projections CPU and 10 scheduling

What is an Analytical Database?

Workload

Data Volumes
Emphasis

Data Organization

Use Cases

Examples

HTAP (Hybrid Transactional
Analytical Processing)

Processing)

OLTP (Online
Transactional
Processing)

Short-running point queries
Moderate (GB — TB)

Data integrity and correctness
Row-wise

Enterprise Resource Planning (ERP)

C)RACRLG postgresoL

My EM)

> OLAP (Online Analytical

Long-running batch queries

Huge (TB — PB)

Scalability and performance
Column-wise

“Big data” and decision making, e.g.
dashboards and ad-hoc data exploration

L] i : . o
Ik ClickHouse @) druid , &

@UMBRA monetdb) 8

Row-wise vs. Column-wise

Data Organisation

Country Product Sales
GB Lambda 350
FR Kappa 400
us lota 1300

Hybrid
(PAX)

[A. Ailamaki et. al.: Weaving
Relations
for Cache Performance. 2001]

Row-wise

(n-ary storage

Columnar
(decompositional

Best suited for

model, NSM) storage model, DSM)

GB GB

Row 1 Lambda Column 1 FR
350 us
FR Lambda

Row 3 p— Column 2 e
us 350

Row 4 lota Column 3 400
1300 1300

Compressability Moderate

Single-row operations

High (data of same type
clustered together)

Full-column scans,
aggregation

System Architecture

Server on-premise

Il Node
lll DB Engine

Cloud

Il DB Engine

Standalone

£) Command-line

[l DB Engine

In-process

Python process

[l DB Engine

SQL Query—bm—ASTm ICIILEINSERRS Physical Plan Builder Physical Plan External

MERGETREE* FAMILY

TABLE ENGINES T
Inserts — Parts 2>+ Merges
I
I
I
I
I
I
Il Node 1 Inserlts Queries
Replicated
MergeTree
S s
= Shard-1 replica
?.,_} Keeper
& Il Node 2
g9 /Replication
Replicated coordination
MergeTree

Shard-1 replica

Plan Executor &3
4 1 4

S

E DBMS

1 Q.‘.

SPECIAL-PURPOSE

ABLE ENGINES

C
y RAM storage
@

DISGNELGE Data sharding

DISTRIBUTED
DATA PROCESSING

Il Node 3

Replicated
MergeTree

Shard-2 replica

Il Node 4 »

Replicated
MergeTree

Shard-2 replica

Data Lakes/
Object stores

VIRTUAL !
TABLE ENGINES S)
INTEGRATION Pub/sub
LAYER systems
g Thread pools %
. KV stores
(® caches
2] RBAC
SR
B Backups K
Users
J\/- Monitoring l
ORTHOGONAL
COMPONENTS Q
Apps

@ User sessions

QQ' Wire protocols
Native, gRPC, HTTP, MySQL,
PostgreSQL Drivers

JDBC / ODBC /
ACCESS LAYER

Python /Go /...

Storage Layer

.Eg.] € influxdb “ RocksDB S5

cassandra

[F. Chang et. al.: Bigtable: A
Log-Structured Merge (LSM) Trees 2 g e e on]

[P. O'Neil et. al.: The Log-Structured
Merge-Tree (LSM-Tree), 1996]

Memory Disk

|
: Sorted String
I Table (SST)

oDoo)| ™. (ooo ODoo ODoo
_EEE» [DD...J:>[DDDJ [EIEIEI] [EII:IEI]
Sorted and immutable

| %

|
|
: Past data
|
|

Incoming writes Memtable

Recent data

LSM Trees: Updates and Deletes

Memory Disk Sorted String Tables

|
I 4 N
: x=2| [...]

Update | x=3 |_I_>: .
: x=3| [.] x=2| [..]]
: \ J
|
|
: x=2| [...]

Delete X: - |_>L ’
1 4 N

tombstone S x=2| L]]

LSM Trees: Compaction

Level O / ooo \ Compaction Strategies
(memtable) K oo N
/ \\ - When? level saturation, file size, file
)/ \ age, file “temperature” ...
\
/I 0o00)|000 \\ - What? individual SSTs, entire levels, ...
/ \
/ \ .
/ ~ ~ \
/ (ooooao o A
\
Level2// ooooo (] \
/ * \
\
/ VA \
/ Compact and merge »
(]’ (88080000} (0080 (yaysotmerge)
oooooooao oooo

[S. Sakar et. al.:| —
Constructing and Analyzing|
the LSM Compaction|
Design Space, 2022]|

LSM-Tree-Based Storage in ClickHouse

INSERT

INSERT

INSERT

ASYNC
INSERT

ASYNC
INSERT

INSERT

Inactive part

v

v

Buffer

v

v

Active part

Part

-=-» Part merge

Part

INSERTSs create an immutable part
(aka. SST).

INSERTSs are synchronous (default)
or asynchronous.

All parts are equal, no levels or
notion of recency.

Periodic merges, the source parts
are deleted once their reference
count drops to 0.

Example Part (1/2)

https://...

https://...

https://...

https://...

Row EventTime RegionID
;0 2023-10-19 17:03:085.154 EMEA
go: . :
:8,191 2023-10-19 17:03:07.490 APAC
58,192 2023-10-19 17:03:07.492 APAC
o1} . :
I16,383 2023-10-19 17:03:09.838 AMER
Compressed Compressed
Block Block

Compressed
Block

Local (per-part) sorting defined by primary key:

CREATE TABLE page_hits
(

EventTime Date CODEC(Delta.ZSTD).
RegionId String CODEC([74)
URL String CODEC(AES),

)
ENGINE = MergeTree() PRIMARY KEY (EventTime)

Part are further divided into granules g0, g1, ...

Consecutive granules in a column form b/ocks
which are compressed:

« generic bit codecs: LZ4, zstd, ...
« logical codecs: delta, ...

« specialised codecs: Gorilla (FP), AES, ...

Example Part (2/2)

Row EventTime
. @ | 2023-10-19 17:03:05.
go. :
18,191 | 2023-10-19 17:03:07.
| 8,192 | 2023-10-19 17:03:07.
gri '

516,383 2023-10-19 17:683:09.

Granule
selection Primary key index

go | 2023-10-19 17:03:05.
g1 | 2023-10-19 17:03:07.

154
492

RegionID URL
EMEA https://
APAC https://
APAC https://
AMER https://

SELECT

count() AS PageViews
FROM hits
WHERE
EventTime>='2023-12-09"'
__________________________ e

Index lookup

Primary key defines sorting AND
a sparse primary key index.

Maps primary key index values to
granules.

Small enough to reside in DRAM.

Used to accelerate predicate
evaluation on primary key
columns.

Data Pruning (1/3)

Analytical databases deal with tables sizes of many petabytes.
The fastest scan is not scanning at all!

Primary Key

Data Pruning (2/3)

Table Projections

ALTER TABLE hits ADD PROJECTION proj(
SELECT * ORDER BY RegionID
)

ALTER TABLE hits MATERIALIZE PROJECTION pj;

- Alternative table versions sorted by a different primary key

EventTime RegionID URL

2023-10-19 17:03:05.154 EMEA https://...
2023-10-19 17:03:05.462 APAC https://...
2023-10-19 17:03:05.875 AMER https://...
2023-10-19 17:03:06.104 APAC https://...
2023-10-19 17:03:07.550 AMER https://...

EventTime RegionID URL

2023-10-19 17:03:05.875 AMER https://...
2023-10-19 17:03:07.550 AMER https://...
2023-10-19 17:03:06.104 APAC https://...
2023-10-19 17:03:05.462 APAC https://...
2023-10-19 17:03:05.154 EMEA https://...

- Speed up queries on columns different than primary key columns.

- Work at the granularity of parts. Parts may or may not have projections.

- High space consumption and insert/merge overhead.

[M. Stonebraker et. al.: C-Store: A
Column-oriented DBMS, 2005]

[G. Moerkotte: Small [_
Materialized Aggregates: -
A Light Weight Index

Data Pruning (3/3) Strucure for Data | [e -

Warehousing, 1998] FROM tab

WHERE clicks BETWEEN 15 AND 30;
min/max

Skipping indexes s | T
. Light-weight alternative to projections ° min:7 Some match >
’ max: 25 load & check
- Store small amounts of metadata at the level of 25
granules or multiple granules which allows to 25
skip data during scans 18
20 min: 17
T All match -->
- Skipping index types: :)
ppINg yp 22 max: 22 skip scan
« Minimum/maximum value - great for 19
17
loosely sorted data. \é /
- Unique values - great for small 6\ / min: 5 None match >
cardinality. 5 X max: 13 skip scan
| 7\
- Bloom filter for row / tokens / n-grams). /5 \

20

Merge-time Data Transformation

Recent data is more relevant than historical data.

“De-prioritise” old data when parts are merged:
Aggregation: collapse rows into aggregated rows
Replacement: replace duplicates in older parts

Archiving: compress, move, or, delete rows/parts

21

Data Replication (1/2)

Data Replication means to store the same part redundantly across nodes.

- Enables high availability (tolerance against node failures) and load balancing.

Based on notion of table state

= set of table parts + table metadata (e.g. column names/types).

Operations which advance the table state:

- Inserts: Add parts.

___ Recorded in global

- Merges: Add parts + delete parts. o T

- DDL statements: Add parts + delete parts+ change metadata.

—

22

[D. Ongaro: In Search of an
Understandable Consensus
Algorithm, 2014]

Data Replication (2/2)

— Add entry —> Fetch entry —— Download part

Node 1 | Node 2 | Node 3
INSERT ———— PartA Part A " PartA ~ Intra-cluster
- replication
. I merge PartC (taple data) is
INSERT ———— PartB - PartB =~ asynchronous
Keeper Replication Log INSERT INSERT MERGE Intra-Keeper
replication

(replication log)
is synchronous
23

Query Layer

Query Compilation and Optimisation (1/4)

% SQL Query—rm—ASTm [ILIIEINGENRS Physical Plan Builder Physical Plan

— Plan Executor &3 £ Eﬁ

Al a

B MERGETREE* FAMILY SPECIAL-PURPOSE VIRTUAL

TADIC CAIRINEC TADIC CAIRINEC ' TADI E CEAIRINEC

25

Query Compilation and Optimisation (2/4)

% SQL QuerywAST—»m [ILIEINEERES Physical Plan Builder Physical Plan

— Plan Executor 3 £ ﬁ

S - B a.

B MERGETREE* FAMILY SPECIAL-PURPOSE VIRTUAL Al
Optimisation of AST Example input Example output
Constant folding concat(lower(‘a’, upper(‘b’)) ‘aB’
Distributive law sum(2 * x) 2 * sum(x)

Transform to IN-lists x =cOR x =d x IN (c, d)

[...]

26

Query Compilation and Optimisation (3/4)

% SQL QuerywASTm LT INEERRES Physical Plan Builder Physical Plan
— Plan Executor ¢} & ﬁ

B - B N =

N MERGETREE* FAMILY SPECIAL-PURPOSE VIRTUAL

TADIEC CAIAINESC TADI EC CAIAINES ' TADI E EAMAINMES

Optimizations of logical plan (e.g. join, scan, aggregate)
Filter pushdown

[...]

27

Query Compilation and Optimisation (4/4)

% SQL Query—vm— MLoglcal Plan Physical Plan Builder Physical Plan

— Plan Executor &3 ﬁ

B MERGETREE* FAMILY SPECIAL-PURPOSE VIRTUAL

TADIEC CAIAINESC TADI EC CAIAINES ' TADI E CAIRIANMEC ¢

Optimisations of physical plan (e.g. hash join, filter evaluation with PK)

Exploit particularities of table engine. E.g. exploit primary key:
WHERE columns form prefix of primary key columns - replace full scan by PK lookup
ORDER BY columns form prefix of primary key columns - remove sort operator

GROUP BY columns form prefix of primary key columns - remove aggregation operator

28

Query Execution and Parallelisation

il Node 1 ll- Node 2 - Node m
(1 (i) o s A
1C1 Cc2 Cni 1C1 C2 Cn 1c1c2 Cn
! L ! i
i i i |
]] |]]
]] |] 1
| I | |]
| i | i
i gt | |
X x i S ———
ll- Node 1 S %
C1 C2 Cn Table shards are processed
————————————————————————— . in parallel by multiple nodes
1%l
:::======================:‘: ~~~~~~~ Data chuncks are
Dl Rl processed in parallel by a
“““““““““““““ i _.-node’s multiple CPU cores
T . ""_""E_;_]I.’.: __________ Data Elementes are
EEEI'E::IZ:Z:::: processed in parallel by a

node’s multiple SIMD units

29

Parallelisation Across Data Chunks (1/2)

Classical Volcano-style execution
Evaluate operator tree recursively top-to-leaf, one-tuple-at-a-time.
Problem 1: Overhead for (virtual) function calls, bad L1/L2/L3 cache locality.
Problem 2: Not parallelised.

Works for OLTP, unsuitable for OLAP.

Solve problem 1: "Vector Vulcano” model
Pass batches of tuples between operators.

Amortise cost of calling operators, enables SIMD.
[P. Boncz: MonetDB/X100:
Hyper-Pipelining Query
Execution, 2005]

30

SELECT RegionID, avg(Latency) AS AvglLatency
FROM hits

H M filter| WHERE URL = 'https://clickhouse.com’
Parallellsatlon Across aggregation| GROUP BY RegionID

sort| ORDER BY AvglLatency DESC

Data Chunks (2/2) Lo 3

lll- Node 1 SINK OPERATOR

PrettyTableFormat

- Solve problem 2: Unfold execution plan LiTit
into N /anes (typically 1 lane / core). - MergeSort
(streamSort | | StreamSort T StreamSort]
)

Iy
(ChunkSort ChunkSort /'[ChunkSort

- Lanes decompose the data to be

(
processed into non-overlapping ranges. ™

Distrlbute
. [GroupSt;teMerge}
- Exchange operators (repartition, z .
o) (Aggregate (Aggregate])(Aggregate |
distribute) ensure lanes remain balanced. Repatiton

/ 3
MergeTreeScan) |(MergeTreeScan]
SOURCE [OPERATOR SOURCE |OPERATOR SOURCE|OPERATOR
LANE 1 LANE 2] LANE 3
HITS TABLE

RegionID URL Latency

FILTER STAGE AGGREGATION STAGE SORTING STAGE

31

[J. Zhou: Implementing Database
Operations Using SIMD

Parallelisation Across Data Elements (1/2) nstructons, 2002)

- Apply the same operation to consecutive data elements.
- Based on compiler auto-vectorisation or manually written intrinsics.

- Compiled into compute kernels which are selected at runtime based based on the
system capabilities (cpuid).

SELECT coll + col2 Dispatch code based on cpuid

FROM tab
if (isArchSupported(TargetArch::AVX512))

implAVX512BW(in1, in2);

else if (isArchSupported(TargetArch::AVX2))
implAVX2(in1, in2, out);

else if (isArchSupported(TargetArch::SSE42))
implSSE42(in1, in2, out);

else
implGeneric(in1, in2, out);

32

Parallelisation Across Data Elements (2/2)

if (isArchSupported(TargetArch::AVX512))
. implAVX512BW(in1, in2);

else if (isArchSupported(TargetArch::AVX2))
implAVX2(in1, in2, out);

else if (isArchSupported(TargetATTm—

implSSE42(in1, in2, out);
else
implGeneric(in1, in2, out);

AVX-512 kernel, manually vectorised

MULTITARGET_FUNCTION_AVX512F_AVX2_SSE42(
MULTITARGET_FUNCTION_HEADER(),
impl,
MULTITARGET_FUNCTION_BODY ((
const double * in1, const double * in2
double * out, size_t num_elements)

H)

{

for (size_t i = 0; i < (sz & ~Bx7); 1 += 8)

{
const __m512d _in1 = _mm512_load_pd(&in1[i]);
const __m512d _in2 = _mm512_load_pd(&in2[i]);
const __m512d _out = _mm512_add_pd(_in1, _in2);
out[i] = (double*)&_out;

}

=

FROM tab

SELECT coll + col2

AVX2 kernel, compiler auto-vectorised

MULTITARGET_FUNCTION_AVX2_SSE42(
MULTITARGET_FUNCTION_HEADER(),
impl,
MULTITARGET_FUNCTION_BODY ((
const double * in1, const double * in2
double * out, size_t num_elements)

for (size_t i = @; i < num_elements; ++i)
*out[i] = *in1[i] + *in2[i];
1)

88

Wrap up

- Looked at LSM-style data organisation, data pruning techniques, and parallel
query execution.

- Practical deployment comes additional “soft” requirements:
- apowerful SQL dialect,
- regular, aggregation and window functions with rich functionality,
- tools for performance introspection and physical database tuning,
- interoperability with other databases and data formats,

- user management and backup

- ClickHouse is open source, development is in the open, contributions are welcome.

34

