Pattern Matching Problem

List the airlines that fly directly from London to Glasgow

Q(z) :- Airport($(x, L o n d o n)$, Airport($(\mathrm{G}$, Glasgow $)$, Flight (x, y, z)

Pattern Matching Problem

List the airlines that fly directly from London to Glasgow

Semantics of Conjunctive Queries

- A match of a conjunctive query $\mathrm{Q}\left(\mathrm{x}_{1}, \ldots, \mathrm{X}_{\mathrm{k}}\right)$:- body in a database D is a homomorphism h from the set of atoms body to the set of atoms D
- The answer to $\mathrm{Q}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{k}\right):$ - body over D is the set of k -tuple

$$
Q(D):=\left\{\left(h\left(x_{1}\right), \ldots, h\left(x_{k}\right)\right) \mid h \text { is a match of } Q \text { in } D\right\}
$$

- The answer consists of the witnesses for the distinguished variables of Q

Query Evaluation

- Understand the complexity of evaluating a conjunctive query over a database
- Measures the complexity in terms of the size of the database - the query is fixed
- What to measure? Queries may have a large output, and it would be misleading to count the output as "complexity"
- We therefore consider the following decision problem for CQ

CQ-Evaluation

Input: a database D, a CQ $Q\left(x_{1}, \ldots, x_{k}\right)$:- body, and a tuple $\left(a_{1}, \ldots, a_{k}\right)$ of values Question: $\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{k}\right) \in \mathrm{Q}(\mathrm{D})$?

```
```

Q-Evaluation

```
```

Q-Evaluation
Input: a database D, and a tuple ((a, ,.., ,
Input: a database D, and a tuple ((a, ,.., ,
Question: (}\mp@subsup{\textrm{a}}{1}{},..,\mp@subsup{\textrm{a}}{k}{})\inQ(D)\mathrm{ ?

```
```

Question: (}\mp@subsup{\textrm{a}}{1}{},..,\mp@subsup{\textrm{a}}{k}{})\inQ(D)\mathrm{ ?

```
```


NP-hardness

(NP-hardness) Reduction from 3-colorability

3COL

Input: an undirected graph G = (V,E)
Question: is there a function $\mathrm{c}: \mathrm{V} \rightarrow\{\mathrm{R}, \mathrm{G}, \mathrm{B}\}$ such that $(\mathrm{v}, \mathrm{u}) \in \mathrm{E} \Rightarrow \mathrm{c}(\mathrm{v}) \neq \mathrm{c}(\mathrm{u})$?
(NP-membership) Guess-and-check:

- Consider a database D, a CQ Q $\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}\right)$:- body, and a tuple $\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{k}\right)$ of values
- Guess a substitution $\mathrm{h}: \operatorname{terms}($ body $) \rightarrow$ terms(D)
- Verify that h is a match of Q in $D, i . e ., h(b o d y) \subseteq D$ and $\left(h\left(x_{1}\right), \ldots, h\left(x_{k}\right)\right)=\left(a_{1}, \ldots, \mathrm{a}_{k}\right)$
(NP-hardness) Reduction from 3-colorability

Data Complexity of Query Evaluation

- Meaningful in practice since the database is usually much bigger than the query
- We consider the following decision problem for a fixed CQ $\mathrm{Q}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}\right)$:- body

Complexity of Query Evaluation

Lemma: \mathbf{G} is 3 -colorable iff \mathbf{G} can be mapped to K_{3}, i.e., \mathbf{G}

therefore, \mathbf{G} is 3 -colorable iff there is a match of $\mathrm{Q}_{\mathbf{6}}$ in $\mathrm{D}=\{E(\mathrm{x}, \mathrm{y}), E(y, z), E(z, x)\}$

$$
\text { the Boolean CQ that represents } \mathbf{G}
$$

Complexity of Query Evaluation

Theorem: CQ-Evaluation is NP-complete, and in PTIME in data complexity

Proof:
(NP-membership) Guess-and-check:

- Consider a database D, a CQ Q $\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}\right)$): body, and a tuple $\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{k}}\right)$ of values
- Guess a substitution $\mathrm{h}:$ terms $($ body $) \rightarrow$ terms(D$)$
- Verify that h is a match of Q in D, i. .e., $h(b o d y) \subseteq D$ and $\left(h\left(x_{1}\right), \ldots, h\left(x_{k}\right)\right)=\left(a_{1}, \ldots, a_{k}\right)$
(NP-hardness) Reduction from 3-colorability
(in PTIME) For every substitution $\mathrm{h}:$ terms(body) \rightarrow terms (D), check if $\mathrm{h}($ body $) \subseteq \mathrm{D}$ and $\left(h\left(x_{1}\right), \ldots, h\left(x_{k}\right)\right)=\left(a_{1}, \ldots, a_{k}\right)$

Static Analysis

CQ-Satisfiability
Input: a conjunctive query Q
Question: is there a database D such that $Q(D)$ is non-empty?

If the answer is no, then the input query Q makes no sense

- CQ-Evaluation becomes trivial - the answer is always NO !

Static Analysis

Static Analysis

CQ-Equivalence

Input: two conjunctive queries Q_{1} and Q_{2}
Question: $Q_{1} \equiv Q_{2}$? or $Q_{1}(D)=Q_{2}(D)$ for every database D ?

CQ-Containment

Input: two conjunctive queries Q_{1} and Q_{2}
Question: $Q_{1} \subseteq Q_{2}$? or $Q_{1}(D) \subseteq Q_{2}(D)$ for every database D ?

- Replace a query Q_{1} with a query Q_{2} that is easier to evaluate
- Equivalence boils down to two containment checks
- But, we have to be sure that $Q_{1}(D)=Q_{2}(D)$ for every database D
- Clearly, $Q_{1}(D)=Q_{2}(D)$ iff $Q_{1}(D) \subseteq Q_{2}(D)$ and $Q_{2}(D) \subseteq Q_{1}(D)$

Complexity of Static Analysis

CQ-Satisfiability
Input: a conjunctive query Q
Question: is there a database D such that $Q(D)$ is non-empty?

CQ-Equivalence
Input: two conjunctive queries Q_{1} and Q_{2}
Question: $Q_{1} \equiv Q_{2}$? or $Q_{1}(D)=Q_{2}(D)$ for every database D ?

Canonical Database

- Convert a conjunctive query Q into a database $\mathrm{D}[\mathrm{Q}]$ - the canonical database of Q
- Given a conjunctive query of the form $Q(x)$:- body, $D[Q]$ is obtained from body by replacing each variable x with a new value $c(x)=x$
- E.g., given $Q(x, y):-R(x, y), P(y, z, w), R(z, x)$, then $D[Q]=\{R(x, y), P(y, z, z w), R(z, x)\}$

CQ-Containment

Input: two conjunctive queries Q_{1} and Q_{2}

- Note: The mapping $\mathrm{c}:\{$ variables in body $\} \rightarrow\{$ new values $\}$ is a bijection, where $c($ body $)=D[Q]$ and $c^{1}(D[Q])=$ bod

Satisfiability of CQs

Equivalence and Containment of CQs

```
CQ-Equivalence
Input: two conjunctive queries }\mp@subsup{Q}{1}{}\mathrm{ and }\mp@subsup{Q}{2}{
Question: }\mp@subsup{Q}{1}{}\equiv\mp@subsup{Q}{2}{}\mathrm{ ? or }\mp@subsup{Q}{1}{}(D)=\mp@subsup{Q}{2}{}(D) for every database D?
```

CQ-Containment
Input: two conjunctive queries Q_{1} and Q_{2}
Question: $Q_{1} \subseteq Q_{2}$? or $Q_{1}(D) \subseteq Q_{2}(D)$ for every database D ?

$$
Q_{1} \equiv Q_{2} \text { iff } Q_{1} \subseteq Q_{2} \text { and } Q_{2} \subseteq Q_{1}
$$

$$
Q_{1} \subseteq Q_{2} \text { iff } Q_{1} \equiv\left(Q_{1} \wedge Q_{2}\right)
$$

...thus, we can safely focus on CQ-Containmen

Homomorphism Theorem

Homomorphism Theorem: Example

A query homomorphism from $\mathrm{Q}_{1}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}\right)$:- body y_{1} to $\mathrm{Q}_{2}\left(\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{k}}\right):-$ body y_{2} is a substitution $\mathrm{h}:$ terms $\left(\right.$ body $\left._{1}\right) \rightarrow$ terms $\left(\right.$ bod $\left._{2}\right)$ such that:

1. h is a homomorphism from body y_{1} to body ${ }_{2}$
2. $\left(h\left(x_{1}\right), \ldots, h\left(x_{k}\right)\right)=\left(y_{1}, \ldots, y_{k}\right)$

Homomorphism Theorem: Let Q_{1} and Q_{2} be conjunctive queries. It holds that: $Q_{1} \subseteq Q_{2}$ iff there exists a query homomorphism from Q_{2} to Q_{1}

Homomorphism Theorem: Proof

$\Leftrightarrow Q_{1} \subseteq Q_{2} \Rightarrow$ there exists a query homomorphism from Q_{2} to Q_{1}

- Clearly, $\left(c\left(x_{1}\right), \ldots, c\left(x_{k}\right)\right) \in Q_{1}\left(D\left[Q_{1}\right]\right)$ - recall that $D\left[Q_{1}\right]=c\left(\right.$ bod $\left.y_{1}\right)$
- Therefore, there exists a homomorphism h such that $\mathrm{h}\left(\right.$ body $\left._{2}\right) \subseteq \mathrm{D}\left[\mathrm{Q}_{1}\right]=\mathrm{c}\left(\right.$ body $\left._{1}\right)$ and $h\left(\left(y_{1}, \ldots, y_{k}\right)\right)=\left(c\left(x_{1}\right), \ldots, c\left(x_{k}\right)\right)$
- By construction, $\mathrm{c}^{-1}\left(\mathrm{c}\left(\right.\right.$ body $\left.\left._{1}\right)\right)=$ body $_{2}$ and $c^{1}\left(\left(c\left(x_{1}\right), \ldots, c\left(x_{k}\right)\right)\right)=\left(x_{1}, \ldots, x_{k}\right)$
- Therefore, $\mathrm{C}^{-1} \circ \mathrm{~h}$ is a
query homomorphism from Q_{2} to Q_{1}

Homomorphism Theorem: Proof

Assume that $Q_{1}\left(x_{1}, \ldots, x_{k}\right):-$ body y_{1} and $Q_{2}\left(y_{1}, \ldots, y_{k}\right):-\operatorname{bod} y_{2}$
$(\Leftrightarrow) Q_{1} \subseteq Q_{2} \Leftarrow$ there exists a query homomorphism from Q_{2} to Q_{1}

- Consider a database D , and a tuple \mathbf{t} such that $\mathbf{t} \in \mathrm{Q}_{\mathbf{1}}(\mathrm{D})$
- We need to show that $\mathbf{t} \in \mathrm{Q}_{2}(\mathrm{D})$
- Clearly, there exists a homomorphism g such that $g\left(b o d y_{1}\right) \subseteq D$ and $g\left(\left(x_{1}, \ldots, x_{k}\right)\right)=\mathbf{t}$
- By hypothesis, there exists a query homomorphism h from Q_{2} to Q_{1}

- h is a query homomorphism from Q_{2} to $Q_{1} \Rightarrow Q_{1} \subseteq Q_{2}$
- But, there is no homomorphism from Q_{1} to $Q_{2} \Rightarrow Q_{1} \subset Q_{2}$
- Therefore, $\mathrm{g}\left(\mathrm{h}\left(\mathrm{body}_{2}\right)\right) \subseteq \mathrm{D}$ and
$g\left(h\left(\left(y_{1}, \ldots, y_{k}\right)\right)\right)=t$, which implies that $t \in Q_{2}(D)$

Existence of a Query Homomorphism

Theorem: Let Q_{1} and Q_{2} be conjunctive queries. The problem of deciding whether there exists a query homomorphism from Q_{2} to Q_{i} is NP-complete

Proof:
(NP-membership) Guess a substitution, and verify that is a query homomorphism (NP-hardness) Easy reduction from CQ-Evaluation

By applying the homomorphism theorem we get that:

Corollary: CQ-Equivalence and CQ-Containment are NP-complete

