Conjunctive Queries: Evaluation and Static Analysis

(Chapter 14 and 15 of DBT)

A match of a conjunctive query \(Q(x_1, \ldots, x_k) \) to a database \(D \) is a homomorphism \(h \) from the set of atoms \(\text{body} \) to the set of atoms \(D \)

The answer to \(Q(x_1, \ldots, x_k) \) over \(D \) is the set of \(k \)-tuples

\[
Q(D) := \{(h(x_1), \ldots, h(x_k)) \mid h \text{ is a match of } Q \text{ in } D\}
\]

The answer consists of the witnesses for the distinguished variables of \(Q \)

Pattern Matching Problem

List the airlines that fly directly from London to Glasgow

\[
\begin{align*}
\text{Flight(VIE,LHR,BA),} & \quad \text{Airport(VIE,Vienna),} \\
\text{Flight(LHR,EDI,BA),} & \quad \text{Airport(LHR,London),} \\
\text{Flight(LGW,GLA,U2),} & \quad \text{Airport(LGW,London),} \\
\text{Flight(LCA,VIE,OS),} & \quad \text{Airport(LCA,Larnaca),} \\
\text{Flight(GLA,LGW,U2),} & \quad \text{Airport(GLA,Glasgow),} \\
\text{Flight(EDI,LCA,OS),} & \quad \text{Airport(EDI,Edinburgh),}
\end{align*}
\]

\[Q(z) : \text{Airport}(x,\text{London}), \text{Airport}(y,\text{Glasgow}), \text{Flight}(x,y,z)\]
Query Evaluation

• Understand the complexity of evaluating a conjunctive query over a database
• What to measure? Queries may have a large output, and it would be misleading to count the output as "complexity"
• We therefore consider the following decision problem for CQ Evaluation

<table>
<thead>
<tr>
<th>CQ Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: a database D, a CQ $Q(x_1, \ldots, x_k) : \text{-body}$, and a tuple (a_1, \ldots, a_k) of values</td>
</tr>
<tr>
<td>Question: $(a_1, \ldots, a_k) \in Q(D)$?</td>
</tr>
</tbody>
</table>

Data Complexity of Query Evaluation

• Measures the complexity in terms of the size of the database - the query is fixed
• Meaningful in practice since the database is usually much bigger than the query
• We consider the following decision problem for a fixed CQ $Q(x_1, \ldots, x_k) : \text{-body}$

<table>
<thead>
<tr>
<th>Q-Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: a database D, and a tuple (a_1, \ldots, a_k) of values</td>
</tr>
<tr>
<td>Question: $(a_1, \ldots, a_k) \in Q(D)$?</td>
</tr>
</tbody>
</table>

Complexity of Query Evaluation

Theorem: CQ Evaluation is NP-complete, and in PTIME in data complexity

Proof:

(NP-membership) Guess-and-check:

- Consider a database D, a CQ $Q(x_1, \ldots, x_k) : \text{-body}$, and a tuple (a_1, \ldots, a_k) of values
- Guess a substitution $h : \text{terms(body)} \rightarrow \text{terms(D)}$
- Verify that h is a match of Q in D, i.e., $h(body) \subseteq D$ and $(h(x_1), \ldots, h(x_k)) = (a_1, \ldots, a_k)$

(NP-hardness) Reduction from 3-colorability

3COL

Input: an undirected graph $G = (V,E)$

Question: is there a function $c : V \rightarrow \{R,G,B\}$ such that $(v,u) \in E \Rightarrow c(v) \neq c(u)$?

Therefore, G is 3-colorable iff G can be mapped to K_3, i.e., $G \hom K_3$, the Boolean CQ that represents G
Complexity of Query Evaluation

Theorem: CQ-Evaluation is NP-complete, and in PTIME in data complexity

Proof:

(NP-membership) Guess-and-check:
- Consider a database D, a CQ $Q(x_1, ..., x_k) \rightarrow \text{body}$, and a tuple $(a_1, ..., a_k)$ of values
- Guess a substitution $h : \text{terms(body)} \rightarrow \text{terms(D)}$
- Verify that h is a match of Q in D, i.e., $h(\text{body}) \subseteq D$ and $(h(x_1), ..., h(x_k)) = (a_1, ..., a_k)$

(NP-hardness) Reduction from 3-colorability

(in PTIME) For every substitution $h : \text{terms(body)} \rightarrow \text{terms(D)}$, check if $h(\text{body}) \subseteq D$ and $(h(x_1), ..., h(x_k)) = (a_1, ..., a_k)$

Static Analysis

CQ-Satisfiability

Input: a conjunctive query Q

Question: is there a database D such that $Q(D)$ is non-empty?

- If the answer is no, then the input query Q makes no sense
- CQ-Evaluation becomes trivial - the answer is always NO!

Static Analysis

CQ-Equivalence

Input: two conjunctive queries Q_1 and Q_2

Question: $Q_1 \equiv Q_2$? or $Q_1(D) = Q_2(D)$ for every database D?

- Replace a query Q_2 with a query Q_1 that is easier to evaluate
- But, we have to be sure that $Q_1(D) = Q_2(D)$ for every database D

Static Analysis

CQ-Containment

Input: two conjunctive queries Q_1 and Q_2

Question: $Q_1 \subseteq Q_2$? or $Q_1(D) \subseteq Q_2(D)$ for every database D?

- Equivalence boils down to two containment checks
- Clearly, $Q_1(D) = Q_2(D)$ if $Q_1(D) \subseteq Q_2(D)$ and $Q_2(D) \subseteq Q_1(D)$
Complexity of Static Analysis

CQ-Satisfiability
Input: a conjunctive query \(Q \)
Question: is there a database \(D \) such that \(Q(D) \) is non-empty?

CQ-Equivalence
Input: two conjunctive queries \(Q_1 \) and \(Q_2 \)
Question: \(Q_1 \equiv Q_2 \) or \(Q_1(D) = Q_2(D) \) for every database \(D \)?

CQ-Containment
Input: two conjunctive queries \(Q_1 \) and \(Q_2 \)
Question: \(Q_1 \subseteq Q_2 \) or \(Q_1(D) \subseteq Q_2(D) \) for every database \(D \)?

Canonical Database

• Convert a conjunctive query \(Q \) into a database \(D(Q) \) - the canonical database of \(Q \)

• Given a conjunctive query of the form \(Q(x) \) : body, \(D(Q) \) is obtained from body by replacing each variable \(x \) with a new value \(c(x) = x \).

• E.g., given \(Q(x,y) : R(x,y), P(y,z,w), R(z,x) \), then \(D(Q) = \{R(x,y), P(y,z,w), R(z,x)\} \)

• Note: The mapping \(c : \) \{variables in body\} → \{new values\} is a bijection, where \(c(\text{body}) = D(Q) \) and \(c^{-1}(D(Q)) = \text{body} \)

Satisfiability of CQs

CQ-Satisfiability
Input: a conjunctive query \(Q \)
Question: is there a database \(D \) such that \(Q(D) \) is non-empty?

Theorem: A conjunctive query \(Q \) is always satisfiable

Proof: Due to its canonical database - \(Q(D(Q)) \) is trivially non-empty

Equivalence and Containment of CQs

CQ-Equivalence
Input: two conjunctive queries \(Q_1 \) and \(Q_2 \)
Question: \(Q_1 \equiv Q_2 \) or \(Q_1(D) = Q_2(D) \) for every database \(D \)?

CQ-Containment
Input: two conjunctive queries \(Q_1 \) and \(Q_2 \)
Question: \(Q_1 \subseteq Q_2 \) or \(Q_1(D) \subseteq Q_2(D) \) for every database \(D \)?

\[Q_1 \equiv Q_2 \iff Q_1 \subseteq Q_2 \text{ and } Q_2 \subseteq Q_1 \]

\[Q_1 \subseteq Q_2 \iff Q_1 \equiv (Q_1 \land Q_2) \]

...thus, we can safely focus on CQ-Containment
Homomorphism Theorem

A query homomorphism from $Q_1(x_1,...,x_k) : \text{body}_1$ to $Q_2(y_1,...,y_l) : \text{body}_2$ is a substitution $h : \text{terms(body}_1) \rightarrow \text{terms(body}_2)$ such that:

1. h is a homomorphism from body_1 to body_2.
2. $(h(x_1),...,h(x_k)) = (y_1,...,y_l)$

Homomorphism Theorem: Proof

Assume that $Q_1(x_1,...,x_k) : \text{body}_1$ and $Q_2(y_1,...,y_l) : \text{body}_2$.

(\Rightarrow) $Q_1 \subseteq Q_2 \Rightarrow$ there exists a query homomorphism from Q_1 to Q_2.

- Clearly, $(c(x_1),...,c(x_k)) \in Q_1[D(Q_1)]$ - recall that $Q_1[D(Q_1)] = c(\text{body}_1)$.
- Since $Q_1 \subseteq Q_2$, we conclude that $(c(x_1),...,c(x_k)) \in Q_2[D(Q_2)]$.
- Therefore, there exists a homomorphism h such that $h(\text{body}_1) \subseteq Q_2[D(Q_2)] = c(\text{body}_2)$ and $h(y_1,...,y_l) = (c(x_1),...,c(x_k))$.
- By construction, $c \circ h = \text{body}_1$.
- Therefore, $c \circ h$ is a query homomorphism from Q_1 to Q_2.

Homomorphism Theorem: Example

Consider a database D and a tuple t such that $t \in Q_1[D]$.

- We need to show that $t \in Q_2[D]$.
- Clearly, there exists a homomorphism g such that $g(\text{body}_1) \subseteq D$ and $g(x_1,...,x_k) = t$.
- By hypothesis, there exists a query homomorphism h from Q_1 to Q_2.
- Therefore, $g \circ h(\text{body}_1) \subseteq D$ and $g(h(x_1,...,x_k)) = t$, which implies that $t \in Q_2[D]$.
Theorem: Let Q_1 and Q_2 be conjunctive queries. The problem of deciding whether there exists a query homomorphism from Q_2 to Q_1 is NP-complete.

Proof:

(NP-membership) Guess a substitution, and verify that it is a query homomorphism.

(NP-hardness) Easy reduction from CQ-Evaluation.

By applying the homomorphism theorem we get that:

Corollary: CQ-Equivalence and CQ-Containment are NP-complete.