Advanced Database Systems (ADBS), University of Edinburgh, 2023/24

Conjunctive Queries: Evaluation and Static Analysis

(Chapter 14 and 15 of DBT)

Semantics of Conjunctive Queries

• A match of a conjunctive query $Q(x_1,...,x_k)$:- body in a database D is a homomorphism h from the set of atoms body to the set of atoms D

• The answer to $Q(x_1,...,x_k)$:- body over D is the set of k-tuples

 $Q(D) := \{(h(x_1),...,h(x_k)) \mid h \text{ is a match of } Q \text{ in } D\}$

The answer consists of the witnesses for the distinguished variables of Q

Pattern Matching Problem

List the airlines that fly directly from London to Glasgow

```
Airport(VIE,Vienna),

Flight(VIE,LHR,BA), Airport(LHR,London),

Flight(LHR,EDI,BA), Airport(LGW,London),

Flight(LGW,GLA,U2), Airport(LCA,Larnaca),

Flight(LCA,VIE,OS), Airport(GLA,Glasgow),

Airport(EDI,Edinburgh)
```

Q(z) :- Airport(x,London), Airport(y,Glasgow), Flight(x,y,z)

Pattern Matching Problem

List the airlines that fly directly from London to Glasgow

Query Evaluation

- Understand the complexity of evaluating a conjunctive query over a database
- What to measure? Queries may have a large output, and it would be misleading to count the output as "complexity"
- We therefore consider the following decision problem for CQ

CQ-Evaluation

Input: a database D, a CQ $Q(x_1,...,x_k)$:-body, and a tuple $(a_1,...,a_k)$ of values

Question: $(a_1,...,a_k) \in \mathbb{Q}(D)$?

combined complexity

Data Complexity of Query Evaluation

- Measures the complexity in terms of the size of the database the query is fixed
- Meaningful in practice since the database is usually much bigger than the query
- We consider the following decision problem for a fixed CQ $Q(x_1,...,x_k)$:- body

Q-Evaluation

Input: a database D, and a tuple $(a_1,...,a_k)$ of values

Question: $(a_1,...,a_k) \in Q(D)$?

Complexity of Query Evaluation

Theorem: CQ-Evaluation is NP-complete, and in PTIME in data complexity

Proof:

(NP-membership) Guess-and-check:

- Consider a database D, a CQ $Q(x_1,...,x_k)$:- body, and a tuple $(a_1,...,a_k)$ of values
- Guess a substitution h : terms(body) → terms(D)
- Verify that h is a match of Q in D, i.e., $h(body) \subseteq D$ and $(h(x_1),...,h(x_k)) = (a_1,...,a_k)$

(NP-hardness) Reduction from 3-colorability

NP-hardness

(NP-hardness) Reduction from 3-colorability

3COL

Input: an undirected graph **G** = (V,E)

Question: is there a function $c: V \to \{R,G,B\}$ such that $(v,u) \in E \Rightarrow c(v) \neq c(u)$?

Lemma: G is 3-colorable iff **G** can be mapped to K_3 , i.e., **G** $\xrightarrow{\text{hom}}$

therefore, **G** is 3-colorable iff there is a match of Q_G in D = {E(x,y),E(y,z),E(z,x)}

the Boolean CQ that represents **G**

Complexity of Query Evaluation

Theorem: CQ-Evaluation is NP-complete, and in PTIME in data complexity

Proof:

(NP-membership) Guess-and-check:

- Consider a database D, a CQ $Q(x_1,...,x_k)$:- body, and a tuple $(a_1,...,a_k)$ of values
- Guess a substitution h : terms(body) → terms(D)
- Verify that h is a match of Q in D, i.e., $h(body) \subseteq D$ and $(h(x_1),...,h(x_k)) = (a_1,...,a_k)$

(NP-hardness) Reduction from 3-colorability

(in PTIME) For every substitution h : terms(body) \rightarrow terms(D), check if h(body) \subseteq D and (h(x₁),...,h(x_k)) = (a₁,...,a_k)

Static Analysis

CQ-Satisfiability

Input: a conjunctive query **Q**

Question: is there a database D such that Q(D) is non-empty?

- If the answer is no, then the input query Q makes no sense
- **CQ**-Evaluation becomes trivial the answer is always NO!

Static Analysis

CQ-Equivalence

Input: two conjunctive queries Q_1 and Q_2

Question: $Q_1 \equiv Q_2$? or $Q_1(D) = Q_2(D)$ for every database D?

- Replace a query Q₁ with a query Q₂ that is easier to evaluate
- But, we have to be sure that $Q_1(D) = Q_2(D)$ for every database D

Static Analysis

CQ-Containment

Input: two conjunctive queries Q_1 and Q_2

Question: $Q_1 \subseteq Q_2$? or $Q_1(D) \subseteq Q_2(D)$ for every database D?

- Equivalence boils down to two containment checks
- Clearly, $Q_1(D) = Q_2(D)$ iff $Q_1(D) \subseteq Q_2(D)$ and $Q_2(D) \subseteq Q_1(D)$

Complexity of Static Analysis

CQ-Satisfiability

Input: a conjunctive query Q

Question: is there a database D such that Q(D) is non-empty?

CQ-Equivalence

Input: two conjunctive queries Q_1 and Q_2

Question: $Q_1 \equiv Q_2$? or $Q_1(D) = Q_2(D)$ for every database D?

CQ-Containment

Input: two conjunctive queries Q_1 and Q_2

Question: $Q_1 \subseteq Q_2$? or $Q_1(D) \subseteq Q_2(D)$ for every database D?

Canonical Database

• Convert a conjunctive query Q into a database D[Q] - the canonical database of Q

• Given a conjunctive query of the form Q(x):- body, D[Q] is obtained from body by replacing each variable x with a new value c(x) = x

• E.g., given $Q(x,y) := R(x,y), P(y,z,w), R(z,x), \text{ then } D[Q] = \{R(x,y), P(y,z,w), R(z,x)\}$

Note: The mapping c : {variables in body} → {new values} is a bijection, where
 c(body) = D[Q] and c⁻¹(D[Q]) = body

Satisfiability of CQs

CQ-Satisfiability

Input: a conjunctive query **Q**

Question: is there a database D such that Q(D) is non-empty?

Theorem: A conjunctive query Q is always satisfiable

Proof: Due to its canonical database - Q(D[Q]) is trivially non-empty

Equivalence and Containment of CQs

CQ-Equivalence

Input: two conjunctive queries Q_1 and Q_2

Question: $Q_1 \equiv Q_2$? or $Q_1(D) = Q_2(D)$ for every database D?

CQ-Containment

Input: two conjunctive queries Q_1 and Q_2

Question: $Q_1 \subseteq Q_2$? or $Q_1(D) \subseteq Q_2(D)$ for every database D?

$$Q_1 \equiv Q_2$$
 iff $Q_1 \subseteq Q_2$ and $Q_2 \subseteq Q_1$
 $Q_1 \subseteq Q_2$ iff $Q_1 \equiv (Q_1 \land Q_2)$

...thus, we can safely focus on **CQ**-Containment

Homomorphism Theorem

A query homomorphism from $Q_1(x_1,...,x_k)$:- body₁ to $Q_2(y_1,...,y_k)$:- body₂ is a substitution h: terms(body₁) \rightarrow terms(body₂) such that:

- 1. h is a homomorphism from body₁ to body₂
- 2. $(h(x_1),...,h(x_k)) = (y_1,...,y_k)$

Homomorphism Theorem: Let Q_1 and Q_2 be conjunctive queries. It holds that:

 $Q_1 \subseteq Q_2$ iff there exists a query homomorphism from Q_2 to Q_1

Homomorphism Theorem: Example

- h is a query homomorphism from Q_2 to $Q_1 \Rightarrow Q_1 \subseteq Q_2$
- But, there is no homomorphism from Q_1 to $Q_2 \Rightarrow Q_1 \subset Q_2$

Homomorphism Theorem: Proof

Assume that $Q_1(x_1,...,x_k)$:- body₁ and $Q_2(y_1,...,y_k)$:- body₂

 (\Rightarrow) $Q_1 \subseteq Q_2 \Rightarrow$ there exists a query homomorphism from Q_2 to Q_1

- Clearly, $(c(x_1),...,c(x_k)) \in Q_1(D[Q_1])$ recall that $D[Q_1] = c(body_1)$
- Since $Q_1 \subseteq Q_2$, we conclude that $(c(x_1),...,c(x_k)) \in Q_2(D[Q_1])$
- Therefore, there exists a homomorphism h such that $h(body_2) \subseteq D[Q_1] = c(body_1)$ and $h((y_1,...,y_k)) = (c(x_1),...,c(x_k))$
- By construction, $c^{-1}(c(body_1)) = body_1$ and $c^{-1}((c(x_1),...,c(x_k))) = (x_1,...,x_k)$
- Therefore, c⁻¹ o h is a
 query homomorphism from Q₂ to Q₁

Homomorphism Theorem: Proof

Assume that $Q_1(x_1,...,x_k)$:- body₁ and $Q_2(y_1,...,y_k)$:- body₂

 (\Leftarrow) $Q_1 \subseteq Q_2 \Leftarrow$ there exists a query homomorphism from Q_2 to Q_1

- Consider a database D, and a tuple t such that $t \in Q_1(D)$
- We need to show that $\mathbf{t} \in \mathbf{Q}_2(D)$
- Clearly, there exists a homomorphism g such that $g(body_1) \subseteq D$ and $g((x_1,...,x_k)) = t$
- By hypothesis, there exists a query homomorphism h from Q₂ to Q₁
- Therefore, g(h(body₂)) ⊆ D and
 g(h((y₁,...,y_k))) = t, which implies that t ∈ Q₂(D)

Existence of a Query Homomorphism

Theorem: Let Q_1 and Q_2 be conjunctive queries. The problem of deciding whether there exists a query homomorphism from Q_2 to Q_1 is NP-complete

Proof:

(NP-membership) Guess a substitution, and verify that is a query homomorphism (NP-hardness) Easy reduction from CQ-Evaluation

By applying the homomorphism theorem we get that:

Corollary: CQ-Equivalence and CQ-Containment are NP-complete