Conjunctive Queries: Evaluation and Static Analysis

(Chapter 14 and 15 of DBT)

Semantics of Conjunctive Queries

- A **match** of a conjunctive query $Q(x_1, \ldots, x_k) :- \text{body}$ in a database D is a homomorphism h from the set of atoms body to the set of atoms D

- The **answer** to $Q(x_1, \ldots, x_k) :- \text{body}$ over D is the set of k-tuples

 \[
 Q(D) := \{(h(x_1), \ldots, h(x_k)) \mid h \text{ is a match of } Q \text{ in } D\}
 \]

- The answer consists of the witnesses for the **distinguished variables** of Q
Pattern Matching Problem

List the airlines that fly directly from London to Glasgow

\[
\begin{align*}
\text{Flight(VIE,LHR,BA)}, & \quad \text{Airport(VIE,Vienna)}, \\
\text{Flight(LHR,EDI,BA)}, & \quad \text{Airport(LHR,London)}, \\
\text{Flight(LGW,GLA,U2)}, & \quad \text{Airport(LGW,London)}, \\
\text{Flight(LCA,VIE,OS)}, & \quad \text{Airport(LCA,Larnaca)}, \\
\text{Flight(LCA,VIE,OS)}, & \quad \text{Airport(GLA,Glasgow)}, \\
\text{Flight(LCA,VIE,OS)}, & \quad \text{Airport(EDI,Edinburgh)}
\end{align*}
\]

\[Q(z) : - \text{Airport}(x,\text{London}), \text{Airport}(y,\text{Glasgow}), \text{Flight}(x,y,z)\]
Pattern Matching Problem

List the airlines that fly directly from London to Glasgow

\{x \mapsto \text{LGW}, y \mapsto \text{GLA}, z \mapsto \text{U2},
\text{London} \mapsto \text{London, Glasgow} \mapsto \text{Glasgow}\}

Q(z) :- \text{Airport}(x,\text{London}), \text{Airport}(y,\text{Glasgow}), \text{Flight}(x,y,z)
Query Evaluation

• Understand the complexity of evaluating a conjunctive query over a database

• What to measure? Queries may have a large output, and it would be misleading to count the output as “complexity”

• We therefore consider the following decision problem for CQ

<table>
<thead>
<tr>
<th>CQ-Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: a database D, a CQ $Q(x_1,\ldots,x_k) :- \text{body}$, and a tuple (a_1,\ldots,a_k) of values</td>
</tr>
<tr>
<td>Question: $(a_1,\ldots,a_k) \in Q(D)$?</td>
</tr>
</tbody>
</table>

combined complexity
Data Complexity of Query Evaluation

- Measures the complexity in terms of the size of the database - the query is fixed
- Meaningful in practice since the database is usually much bigger than the query
- We consider the following decision problem for a fixed CQ $Q(x_1,\ldots,x_k)$:

Q-Evaluation

Input: a database D, and a tuple (a_1,\ldots,a_k) of values

Question: $(a_1,\ldots,a_k) \in Q(D)$?
Complexity of Query Evaluation

Theorem: CQ-Evaluation is NP-complete, and in PTIME in data complexity

Proof:

(NP-membership) Guess-and-check:
- Consider a database D, a CQ $Q(x_1,\ldots,x_k) :- \text{body}$, and a tuple (a_1,\ldots,a_k) of values
- Guess a substitution $h : \text{terms(body)} \rightarrow \text{terms(D)}$
- Verify that h is a match of Q in D, i.e., $h(\text{body}) \subseteq D$ and $(h(x_1),\ldots,h(x_k)) = (a_1,\ldots,a_k)$

(NP-hardness) Reduction from 3-colorability
NP-hardness

(NP-hardness) Reduction from 3-colorability

3COL

Input: an undirected graph $G = (V,E)$

Question: is there a function $c : V \rightarrow \{R,G,B\}$ such that $(v,u) \in E \Rightarrow c(v) \neq c(u)$?

Lemma: G is 3-colorable iff G can be mapped to K_3, i.e., $G \xrightarrow{\text{hom}}$

therefore, G is 3-colorable iff there is a match of Q_G in $D = \{E(x,y), E(y,z), E(z,x)\}$

the Boolean CQ that represents G
Complexity of Query Evaluation

Theorem: CQ-Evaluation is NP-complete, and in PTIME in data complexity

Proof:

(NP-membership) Guess-and-check:

• Consider a database D, a CQ $Q(x_1,\ldots,x_k) :\text{- body}$, and a tuple (a_1,\ldots,a_k) of values

• Guess a substitution $h : \text{terms(body)} \rightarrow \text{terms(D)}$

• Verify that h is a match of Q in D, i.e., $h(\text{body}) \subseteq D$ and $(h(x_1),\ldots,h(x_k)) = (a_1,\ldots,a_k)$

(NP-hardness) Reduction from 3-colorability

(in PTIME) For every substitution $h : \text{terms(body)} \rightarrow \text{terms(D)}$, check if $h(\text{body}) \subseteq D$ and $(h(x_1),\ldots,h(x_k)) = (a_1,\ldots,a_k)$
Static Analysis

CQ-Satisfiability

Input: a conjunctive query Q

Question: is there a database D such that $Q(D)$ is non-empty?

- If the answer is no, then the input query Q makes no sense
- **CQ-Evaluation becomes trivial** - the answer is always NO!
CQ-Equivalence

Input: two conjunctive queries Q_1 and Q_2

Question: $Q_1 \equiv Q_2$? or $Q_1(D) = Q_2(D)$ for every database D?

- Replace a query Q_1 with a query Q_2 that is easier to evaluate
- But, we have to be sure that $Q_1(D) = Q_2(D)$ for every database D
CQ-Containment

Input: two conjunctive queries \(Q_1\) and \(Q_2\)

Question: \(Q_1 \subseteq Q_2\)? or \(Q_1(D) \subseteq Q_2(D)\) for every database \(D\)?

- Equivalence boils down to two containment checks
- Clearly, \(Q_1(D) = Q_2(D)\) iff \(Q_1(D) \subseteq Q_2(D)\) and \(Q_2(D) \subseteq Q_1(D)\)
Complexity of Static Analysis

CQ-Satisfiability

Input: a conjunctive query Q

Question: is there a database D such that $Q(D)$ is non-empty?

CQ-Equivalence

Input: two conjunctive queries Q_1 and Q_2

Question: $Q_1 \equiv Q_2$? or $Q_1(D) = Q_2(D)$ for every database D?

CQ-Containment

Input: two conjunctive queries Q_1 and Q_2

Question: $Q_1 \subseteq Q_2$? or $Q_1(D) \subseteq Q_2(D)$ for every database D?
Canonical Database

• Convert a conjunctive query Q into a database $D[Q]$ - the canonical database of Q

• Given a conjunctive query of the form $Q(x) :- \text{body}$, $D[Q]$ is obtained from body by replacing each variable x with a new value $c(x) = x$

• E.g., given $Q(x,y) :- R(x,y), P(y,z,w), R(z,x)$, then $D[Q] = \{R(x,y), P(y,z,w), R(z,x)\}$

• Note: The mapping $c : \{\text{variables in body}\} \rightarrow \{\text{new values}\}$ is a bijection, where $c(\text{body}) = D[Q]$ and $c^{-1}(D[Q]) = \text{body}$
Satisfiability of CQs

Theorem: A conjunctive query Q is always satisfiable

Proof: Due to its canonical database $D[Q]$ is trivially non-empty
Equivalence and Containment of CQs

<table>
<thead>
<tr>
<th>CQ-Equivalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: two conjunctive queries Q_1 and Q_2</td>
</tr>
<tr>
<td>Question: $Q_1 \equiv Q_2$? or $Q_1(D) = Q_2(D)$ for every database D?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CQ-Containment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: two conjunctive queries Q_1 and Q_2</td>
</tr>
<tr>
<td>Question: $Q_1 \subseteq Q_2$? or $Q_1(D) \subseteq Q_2(D)$ for every database D?</td>
</tr>
</tbody>
</table>

$Q_1 \equiv Q_2$ iff $Q_1 \subseteq Q_2$ and $Q_2 \subseteq Q_1$

$Q_1 \subseteq Q_2$ iff $Q_1 \equiv (Q_1 \land Q_2)$

...thus, we can safely focus on CQ-Containment
Homomorphism Theorem

A query homomorphism from $Q_1(x_1,\ldots,x_k) :- \text{body}_1$ to $Q_2(y_1,\ldots,y_k) :- \text{body}_2$

is a substitution $h : \text{terms}(\text{body}_1) \rightarrow \text{terms}(\text{body}_2)$ such that:

1. h is a homomorphism from body_1 to body_2

2. $(h(x_1),\ldots,h(x_k)) = (y_1,\ldots,y_k)$

Homomorphism Theorem: Let Q_1 and Q_2 be conjunctive queries. It holds that:

$Q_1 \subseteq Q_2$ iff there exists a query homomorphism from Q_2 to Q_1
Homomorphism Theorem: Example

\[Q_1(x, y) : - R(x, z), S(z, z), R(z, y) \]

\[Q_2(a, b) : - R(a, c), S(c, d), R(d, b) \]

\[h = \{a \mapsto x, b \mapsto y, c \mapsto z, d \mapsto z\} \]

• h is a query homomorphism from \(Q_2 \) to \(Q_1 \) \(\Rightarrow \) \(Q_1 \subseteq Q_2 \)

• But, there is no homomorphism from \(Q_1 \) to \(Q_2 \) \(\Rightarrow \) \(Q_1 \subset Q_2 \)
Homomorphism Theorem: Proof

Assume that \(Q_1(x_1,\ldots,x_k) :- body_1 \) and \(Q_2(y_1,\ldots,y_k) :- body_2 \)

\((\Rightarrow)\) \(Q_1 \subseteq Q_2 \ \Rightarrow \) there exists a query homomorphism from \(Q_2 \) to \(Q_1 \)

- Clearly, \((c(x_1),\ldots,c(x_k)) \in Q_1(D[Q_1]) \) - recall that \(D[Q_1] = c(body_1) \)
- Since \(Q_1 \subseteq Q_2 \), we conclude that \((c(x_1),\ldots,c(x_k)) \in Q_2(D[Q_1]) \)
- Therefore, there exists a homomorphism \(h \) such that \(h(body_2) \subseteq D[Q_1] = c(body_1) \) and \(h((y_1,\ldots,y_k)) = (c(x_1),\ldots,c(x_k)) \)
- By construction, \(c^{-1}(c(body_1)) = body_1 \) and \(c^{-1}((c(x_1),\ldots,c(x_k))) = (x_1,\ldots,x_k) \)
- Therefore, \(c^{-1} \circ h \) is a query homomorphism from \(Q_2 \) to \(Q_1 \)
Homomorphism Theorem: Proof

Assume that \(Q_1(x_1, \ldots, x_k) :- \text{body}_1 \) and \(Q_2(y_1, \ldots, y_k) :- \text{body}_2 \)

\((\Leftarrow)\) \(Q_1 \subseteq Q_2 \Leftarrow \) there exists a query homomorphism from \(Q_2 \) to \(Q_1 \)

- Consider a database \(D \), and a tuple \(t \) such that \(t \in Q_1(D) \)
- We need to show that \(t \in Q_2(D) \)
- Clearly, there exists a homomorphism \(g \) such that \(g(\text{body}_1) \subseteq D \) and \(g((x_1, \ldots, x_k)) = t \)
- By hypothesis, there exists a query homomorphism \(h \) from \(Q_2 \) to \(Q_1 \)
- Therefore, \(g(h(\text{body}_2)) \subseteq D \) and \(g(h((y_1, \ldots, y_k))) = t \), which implies that \(t \in Q_2(D) \)

\[
\begin{array}{c}
Q_2(y_1, \ldots, y_k) :- \text{body}_2 \\
\downarrow \quad \downarrow \quad \downarrow g \\
Q_1(x_1, \ldots, x_k) :- \text{body}_1 \\
\downarrow \quad \downarrow g \\
t \quad D \\
\end{array}
\]
Existence of a Query Homomorphism

Theorem: Let Q_1 and Q_2 be conjunctive queries. The problem of deciding whether there exists a query homomorphism from Q_2 to Q_1 is NP-complete.

Proof:

(NP-membership) Guess a substitution, and verify that is a query homomorphism

(NP-hardness) Easy reduction from CQ-Evaluation

By applying the homomorphism theorem we get that:

Corollary: CQ-Equivalence and CQ-Containment are NP-complete.