Advanced Database Systems (ADBS), University of Edinburgh, 2023/24

Conjunctive Queries: Fast Evaluation
(Chapter 18 of DBT)
[DBT] Database Theory, https://github.com/pdm-book/community

Complexity of Query Evaluation

Theorem: CQ-Evaluation is NP-complete, and in PTIME in data complexity

Evaluating a CQ Q over a database D takes time \||D|| $\|^{\circ(\||a| \mid}$

Complexity of Query Evaluation

Theorem: CQ-Evaluation is NP-complete, and in PTIME in data complexity

Proof:
(NP-membership) Guess-and-check:

- Consider a database D, a CQ $\mathrm{Q}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{k}\right)$:- body, and a tuple $\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{k}}\right)$ of values
- Guess a substitution $\mathrm{h}:$ terms $($ body $) \rightarrow$ terms (D)
- Verify that h is a match of Q in D, i.e., $h($ body $) \subseteq D$ and $\left(h\left(x_{1}\right), \ldots, h\left(x_{k}\right)\right)=\left(a_{1}, \ldots, \mathrm{a}_{k}\right)$
(NP-hardness) Reduction from 3-colorability
(in PTIME) For every substitution $\mathrm{h}:$ terms(body) \rightarrow terms (D), check if $\mathrm{h}($ body $) \subseteq \mathrm{D}$ and $\left(h\left(x_{1}\right), \ldots, h\left(x_{k}\right)\right)=\left(a_{1}, \ldots, a_{k}\right)$

Minimizing Conjunctive Queries

Database theory has developed principled methods for optimizing CQs:

- Find an equivalent CQ with minimal number of atoms (the core)
- Provides a notion of "true" optimality

Minimizing Conjunctive Queries

- But, a minimal equivalent CQ might not be easier to evaluate - remains $N P$-hard
- "Good" classes of CQs for which query evaluation is tractable (in combined complexity):
- Graph-based
- Hypergraph-based

"Good" Classes of Conjunctive Queries

- Graph-based 7

- CQs of bounded treewidth - their graph has bounded treewidth

Acyclic Hypergraphs

A join tree of a hypergraph $\mathbf{H}=(\mathrm{V}, \mathrm{E})$ is a labeled tree $\mathbf{T}=(\mathrm{N}, \mathrm{F}, \mathrm{L})$, where $\mathrm{L}: \mathrm{N} \rightarrow \mathrm{E}$ such that:

1. For each hyperedge $e \in E$ of H, there exists $n \in N$ such that $e=L(n)$
2. For each node $u \in V$ of \mathbf{H}, the set $\{n \in N \mid u \in L(n)\}$ induces a connected subtree of T

- Hypergraph-based:
- CQs of bounded hypertree width - their hypergraph has bounded hypertree width
- Acyclic CQs - their hypergraph has hypertree width 1
(Hyper)graph of Conjunctive Queries
$Q:-R(x, y, z), R(z, u, v), R(v, w, x)$
graph of $Q-G(Q)$

hypergraph of $Q-H(Q)$

Acyclic Hypergraphs

A join tree of a hypergraph $\mathbf{H}=(\mathrm{V}, \mathrm{E})$ is a labeled tree $\mathbf{T}=(\mathrm{N}, \mathrm{F}, \mathrm{L})$, where $\mathrm{L}: \mathrm{N} \rightarrow \mathrm{E}$ such that:

1. For each hyperedge $e \in E$ of \mathbf{H}, there exists $\mathrm{n} \in \mathrm{N}$ such that $\mathrm{e}=\mathrm{L}(\mathrm{n})$
2. For each node $u \in V$ of \mathbf{H}, the set $\{n \in N \mid u \in L(n)\}$ induces a connected subtree of T

Acyclic Hypergraphs

A join tree of a hypergraph $\mathbf{H}=(\mathrm{V}, \mathrm{E})$ is a labeled tree $\mathbf{T}=(\mathrm{N}, \mathrm{F}, \mathrm{L})$, where $\mathrm{L}: \mathrm{N} \rightarrow \mathrm{E}$ such that:

1. For each hyperedge $\mathrm{e} \in \mathrm{E}$ of H , there exists $\mathrm{n} \in \mathrm{N}$ such that $\mathrm{e}=\mathrm{L}(\mathrm{n})$
2. For each node $u \in V$ of \mathbf{H}, the set $\{n \in N \mid u \in L(n)\}$ induces a connected subtree of T

Definition: A hypergraph is acyclic if it has a join tree

prime example of a cyclic hypergraph

Relevant Algorithmic Tasks

ACYCLICITY

Input: a conjunctive query Q
Question: is Q acyclic? or is $\mathrm{H}(\mathrm{Q})$ acyclic?

Checking Acyclicity

Checking Acyclicity

Via the GYO-reduction (Graham, Yu and Ozsoyoglu)
Via the GYO-reduction (Graham, Yu and Ozsoyoglu)

1. Eliminate nodes occurring in at most one hyperedge
2. Eliminate nodes occurring in at most one hyperedge
3. Eliminate hyperedges that are empty or contained in other hyperedges
4. Eliminate hyperedges that are empty or contained in other hyperedges

8,9	
$\{1,3,4,5,6,7,8\}$	$\{9,10,11\}$
$\{1,2,3\}$	$\{11,12\}$
	$\{12,13\}$

$\{8,9\}$
$\{1,3,4,5,6,7,8\}$
$\{9,10,11\}$
$\{1,2,3\}$
$\{11,12\}$
$\{12,13\}$

Checking Acyclicity

Checking Acyclicity

Via the GYO-reduction (Graham, Yu and Ozsoyoglu)

Via the GYO-reduction (Graham, Yu and Ozsoyoglu)

1. Eliminate nodes occurring in at most one hyperedge
2. Eliminate nodes occurring in at most one hyperedge
3. Eliminate hyperedges that are empty or contained in other hyperedges
4. Eliminate hyperedges that are empty or contained in other hyperedges

\{8,9\}

$\{9,10,11\}$
\{11,12\}
$\{12,13\}$

$\{8,9\}$

$\{1,3,4,5,6,7,8\}$	$\{9,10,11\}$
$\{1,2,3\}$	$\{11,12\}$
	$\{12,13\}$

Checking Acyclicity

Checking Acyclicity

Via the GYO-reduction (Graham, Yu and Ozsoyoglu)
Via the GYO-reduction (Graham, Yu and Ozsoyoglu)

1. Eliminate nodes occurring in at most one hyperedge
2. Eliminate nodes occurring in at most one hyperedge
3. Eliminate hyperedges that are empty or contained in other hyperedges
4. Eliminate hyperedges that are empty or contained in other hyperedges

$\left.\right|_{\{1,2,3,5,6,7,8\}} ^{\{8,9\}}$

Checking Acyclicity

Checking Acyclicity

Via the GYO-reduction (Graham, Yu and Ozsoyoglu)
Via the GYO-reduction (Graham, Yu and Ozsoyoglu)

1. Eliminate nodes occurring in at most one hyperedge
2. Eliminate nodes occurring in at most one hyperedge
3. Eliminate hyperedges that are empty or contained in other hyperedges
4. Eliminate hyperedges that are empty or contained in other hyperedges

\{8,9\}

Checking Acyclicity

Via the GYO-reduction (Graham, Yu and Ozsoyoglu)

Checking Acyclicity

1. Eliminate nodes occurring in at most one hyperedge

Via the GYO-reduction (Graham, Yu and Ozsoyoglu)

1. Eliminate nodes occurring in at most one hyperedge
2. Eliminate hyperedges that are empty or contained in other hyperedges
3. Eliminate hyperedges that are empty or contained in other hyperedges

Checking Acyclicity

Checking Acyclicity

Via the GYO-reduction (Graham, Yu and Ozsoyoglu)

1. Eliminate nodes occurring in at most one hyperedge

Via the GYO-reduction (Graham, Yu and Ozsoyoglu)

1. Eliminate nodes occurring in at most one hyperedge
2. Eliminate hyperedges that are empty or contained in other hyperedges

Theorem: A hypergraph \mathbf{H} is acyclic iff $\mathrm{GYO}(\mathbf{H})=\varnothing$
checking whether H is acyclic is feasible in polynomial time, and if it is the case, a join tree can be found in polynomial time

$$
\Downarrow
$$

Theorem: ACYCLICITY is in PTIME

Checking Acyclicity

Theorem: ACYCLICITY is in PTIME

NOTE: actually, we can check whether a CQ is acyclic in time $\mathrm{O}(||\mathrm{Q}||)$
linear time in the size Q

Evaluating Acyclic CQs

Theorem: ACQ-Evaluation is in PTIME

NOTE: actually, if $\mathrm{H}(\mathrm{Q})$ is acyclic, then Q can be evaluated in time $\mathrm{O}(\|\mathrm{D}\| \mid$ • |Q|||
linear time in the size of D and Q

Yannakaki's Algorithm

Yannakaki's Algorithm: Step 1

Dynamic programming algorithm over the join tree
$Q:-R_{1}\left(x_{1}, x_{2}, x_{3}\right), R_{2}\left(x_{2}, x_{3}\right), R_{2}\left(x_{5}, x_{6}\right), R_{3}\left(x_{3}\right), R_{4}\left(x_{2}, x_{4}, x_{3}\right)$

Given a database D , and an acyclic Boolean CQ Q

1. Compute the join tree \mathbf{T} of $\mathrm{H}(\mathrm{Q})$
2. Assign to each node of T the corresponding relation of D
3. Compute semi-joins in a bottom up traversal of T
4. Return YES if the resulting relation at the root of T is non-empty otherwise, return NO

Recap

- "Good" classes of CQs for which query evaluation is tractable - conditions based on the graph or hypergraph of the CQ
- Acyclic CQs - their hypergraph is acyclic, can be checked in linear time
- Evaluating acyclic CQs is feasible in linear time (Yannakaki's algorithm)

