Conjunctive Queries: Fast Evaluation

(Chapter 18 of DBT)

Complexity of Query Evaluation

Theorem: CQ-Evaluation is NP-complete, and in PTIME in data complexity

Proof:

(NP-membership) Guess-and-check:

• Consider a database D, a CQ $Q(x_1,\ldots,x_k) : \text{body}$, and a tuple (a_1,\ldots,a_k) of values
• Guess a substitution $h : \text{terms(body)} \rightarrow \text{terms(D)}$
• Verify that h is a match of Q in D, i.e., $h(\text{body}) \subseteq D$ and $(h(x_1),\ldots,h(x_k)) = (a_1,\ldots,a_k)$

(NP-hardness) Reduction from 3-colorability

(in PTIME) For every substitution $h : \text{terms(body)} \rightarrow \text{terms(D)}$, check if $h(\text{body}) \subseteq D$ and $(h(x_1),\ldots,h(x_k)) = (a_1,\ldots,a_k)$

Minimizing Conjunctive Queries

Database theory has developed principled methods for optimizing CQs:

• Find an equivalent CQ with minimal number of atoms (the core)
• Provides a notion of "true" optimality

Evaluating a CQ Q over a database D takes time $|D|^{O(|Q|)}$
Minimizing Conjunctive Queries

- But, a minimal equivalent CQ might not be easier to evaluate - remains NP-hard

- “Good” classes of CQs for which query evaluation is tractable (in combined complexity):
 - Graph-based
 - Hypergraph-based

(Hyper)graph of Conjunctive Queries

\[
Q : \neg \left[R(x, y, z), R(z, u, v), R(v, w, x) \right]
\]

“Good” Classes of Conjunctive Queries

- Graph-based
 - CQs of bounded treewidth - their graph has bounded treewidth

- Hypergraph-based:
 - CQs of bounded hypertree width - their hypergraph has bounded hypertree width
 - Acyclic CQs - their hypergraph has hypertree width 1

Acyclic Hypergraphs

A join tree of a hypergraph \(H = (V, E) \) is a labeled tree \(T = (N, F, L) \), where \(L : N \rightarrow E \) such that:

1. For each hyperedge \(e \in E \) of \(H \), there exists \(n \in N \) such that \(e = L(n) \)
2. For each node \(u \in V \) of \(H \), the set \(\{ n \in N \mid u \in L(n) \} \) induces a connected subtree of \(T \)
Acyclic Hypergraphs

A join tree of a hypergraph $H = (V,E)$ is a labeled tree $T = (N,F,L)$, where $L : N \rightarrow E$ such that:

1. For each hyperedge $e \in E$ of H, there exists $n \in N$ such that $e = L(n)$
2. For each node $u \in V$ of H, the set $\{n \in N \mid u \in L(n)\}$ induces a connected subtree of T

Definition: A hypergraph is **acyclic** if it has a join tree

Relevant Algorithmic Tasks

ACYCLICITY

Input: a conjunctive query Q

Question: is Q acyclic? or is $H(Q)$ acyclic?

ACQ Evaluation

Input: a database D, an acyclic conjunctive query Q, and a tuple (a_1, \ldots, a_k) of values

Question: $(a_1, \ldots, a_k) \in Q(D)$?
Via the GYO-reduction (Graham, Yu and Ozsoyoglu)

1. Eliminate nodes occurring in at most one hyperedge
2. Eliminate hyperedges that are empty or contained in other hyperedges
Checking Acyclicity

Via the **GYO-reduction** (Graham, Yu and Ozsoyoglu)

1. Eliminate nodes occurring in at most one hyperedge
2. Eliminate hyperedges that are empty or contained in other hyperedges

Via the **GYO-reduction** (Graham, Yu and Ozsoyoglu)

1. Eliminate nodes occurring in at most one hyperedge
2. Eliminate hyperedges that are empty or contained in other hyperedges
Checking Acyclicity

Via the GYO-reduction (Graham, Yu and Ozsoyoglu)
1. Eliminate nodes occurring in at most one hyperedge
2. Eliminate hyperedges that are empty or contained in other hyperedges

Via the GYO-reduction (Graham, Yu and Ozsoyoglu)
1. Eliminate nodes occurring in at most one hyperedge
2. Eliminate hyperedges that are empty or contained in other hyperedges

Theorem: A hypergraph \(H \) is acyclic iff \(\text{GYO}(H) = \emptyset \)

\(\Rightarrow \) checking whether \(H \) is acyclic is feasible in polynomial time, and if it is the case, a join tree can be found in polynomial time

\(\Rightarrow \) Theorem: ACYCLICITY is in PTIME
Checking Acyclicity

Theorem: ACYCLICITY is in PTIME

NOTE: actually, we can check whether a CQ is acyclic in time $O(||Q||)$ linear time in the size Q.

Evaluating Acyclic CQs

Theorem: ACQ-Evaluation is in PTIME

NOTE: actually, if $H(Q)$ is acyclic, then Q can be evaluated in time $O(||D|| \cdot ||Q||)$ linear time in the size of D and Q.

Yannakaki’s Algorithm

Dynamic programming algorithm over the join tree

Given a database D, and an acyclic Boolean CQ Q:

1. Compute the join tree T of $H(Q)$
2. Assign to each node of T the corresponding relation of D
3. Compute semi-joins in a bottom up traversal of T
4. Return YES if the resulting relation at the root of T is non-empty; otherwise, return NO

Yannakaki’s Algorithm: Step 1

$Q : R(x_1, x_2, x_3), R(x_2, x_3), R(x_3, x_4), R(x_5, x_6, x_7)$

![Diagram of join tree](attachment:join_tree.png)
Recap

- "Good" classes of CQs for which query evaluation is tractable - conditions based on the graph or hypergraph of the CQ.

- Acyclic CQs - their hypergraph is acyclic, can be checked in linear time.

- Evaluating acyclic CQs is feasible in linear time (Yannakaki’s algorithm).