Conjunctive Queries: Fast Evaluation

(Chapter 18 of DBT)

Complexity of Query Evaluation

Theorem: CQ-Evaluation is NP-complete, and in PTIME in data complexity

Proof:

(NP-membership) Guess-and-check:
- Consider a database D, a CQ $Q(x_1,...,x_k) :- \text{body}$, and a tuple $(a_1,...,a_k)$ of values
- Guess a substitution $h : \text{terms(body)} \rightarrow \text{terms}(D)$
- Verify that h is a match of Q in D, i.e., $h(\text{body}) \subseteq D$ and $(h(x_1),...,h(x_k)) = (a_1,...,a_k)$

(NP-hardness) Reduction from 3-colorability

(in PTIME) For every substitution $h : \text{terms(body)} \rightarrow \text{terms}(D)$, check if $h(\text{body}) \subseteq D$ and $(h(x_1),...,h(x_k)) = (a_1,...,a_k)$
Complexity of Query Evaluation

Theorem: CQ-Evaluation is NP-complete, and in PTIME in data complexity.

Evaluating a CQ Q over a database D takes time $|D|^{O(|Q|)}$.
Minimizing Conjunctive Queries

Database theory has developed principled methods for optimizing CQs:

- Find an equivalent CQ with minimal number of atoms (the core)
- Provides a notion of “true” optimality

\[
\begin{align*}
Q(x) & : - R(x,y), R(x,b), R(a,b), R(u,c), R(u,v), S(a,c,d) \\
\{y \mapsto b\} & \\
Q(x) & : - R(x,b), R(a,b), R(u,c), R(u,v), S(a,c,d) \\
\{v \mapsto c\} & \\
Q(x) & : - R(x,b), R(a,b), R(u,c), \quad \quad S(a,c,d)
\end{align*}
\]
Minimizing Conjunctive Queries

• But, a minimal equivalent CQ might not be easier to evaluate - remains NP-hard

• “Good” classes of CQs for which query evaluation is tractable (*in combined complexity*):
 – Graph-based
 – Hypergraph-based
(Hyper)graph of Conjunctive Queries

\[Q \ ::= \ R(x,y,z), \ R(z,u,v), \ R(v,w,x) \]
“Good” Classes of Conjunctive Queries

- **Graph-based**
 - CQs of bounded treewidth - their graph has bounded treewidth

- **Hypergraph-based:**
 - CQs of bounded hypertree width - their hypergraph has bounded hypertree width
 - Acyclic CQs - their hypergraph has hypertree width 1

measures how close a graph is to a tree

measures how close a hypergraph is to an acyclic one
Acyclic Hypergraphs

A join tree of a hypergraph $H = (V,E)$ is a labeled tree $T = (N,F,L)$, where $L : N \rightarrow E$ such that:

1. For each hyperedge $e \in E$ of H, there exists $n \in N$ such that $e = L(n)$

2. For each node $u \in V$ of H, the set $\{n \in N \mid u \in L(n)\}$ induces a connected subtree of T
A join tree of a hypergraph $H = (V,E)$ is a labeled tree $T = (N,F,L)$, where $L : N \rightarrow E$ such that:

1. For each hyperedge $e \in E$ of H, there exists $n \in N$ such that $e = L(n)$

2. For each node $u \in V$ of H, the set $\{n \in N \mid u \in L(n)\}$ induces a connected subtree of T

condition 2 is violated
Acyclic Hypergraphs

A join tree of a hypergraph $H = (V,E)$ is a labeled tree $T = (N,F,L)$, where $L : N \rightarrow E$ such that:

1. For each hyperedge $e \in E$ of H, there exists $n \in N$ such that $e = L(n)$

2. For each node $u \in V$ of H, the set $\{n \in N \mid u \in L(n)\}$ induces a connected subtree of T

Definition: A hypergraph is acyclic if it has a join tree

prime example of a cyclic hypergraph
Acyclic Hypergraphs

A join tree of a hypergraph $H = (V,E)$ is a labeled tree $T = (N,F,L)$, where $L : N \rightarrow E$ such that:

1. For each hyperedge $e \in E$ of H, there exists $n \in N$ such that $e = L(n)$

2. For each node $u \in V$ of H, the set $\{n \in N \mid u \in L(n)\}$ induces a connected subtree of T

Definition: A hypergraph is **acyclic** if it has a join tree

but this is acyclic
Relevant Algorithmic Tasks

ACYCLICITY

Input: a conjunctive query \(Q \)

Question: is \(Q \) acyclic? or is \(H(Q) \) acyclic?

\[\{ Q \in \text{CQ} \mid H(Q) \text{ is acyclic} \} \]

ACQ-Evaluation

Input: a database \(D \), an acyclic conjunctive query \(Q \), and a tuple \((a_1, \ldots, a_k)\) of values

Question: \((a_1, \ldots, a_k) \in Q(D)\)?
Checking Acyclicity

Via the GYO-reduction (Graham, Yu and Ozsoyoglu)

1. Eliminate nodes occurring in at most one hyperedge

2. Eliminate hyperedges that are empty or contained in other hyperedges
Checking Acyclicity

Via the **GYO-reduction** (Graham, Yu and Ozsoyoglu)

1. Eliminate nodes occurring in at most one hyperedge

2. Eliminate hyperedges that are empty or contained in other hyperedges
Checking Acyclicity

Via the GYO-reduction (Graham, Yu and Ozsoyoglu)

1. Eliminate nodes occurring in at most one hyperedge

2. Eliminate hyperedges that are empty or contained in other hyperedges
Checking Acyclicity

Via the **GYO-reduction** (Graham, Yu and Ozsoyoglu)

1. Eliminate nodes occurring in at most one hyperedge
2. Eliminate hyperedges that are empty or contained in other hyperedges
Checking Acyclicity

Via the *GYO-reduction* (Graham, Yu and Ozsoyoglu)

1. Eliminate nodes occurring in at most one hyperedge
2. Eliminate hyperedges that are empty or contained in other hyperedges
Checking Acyclicity

Via the **GYO-reduction** (Graham, Yu and Ozsoyoglu)

1. Eliminate nodes occurring in at most one hyperedge
2. Eliminate hyperedges that are empty or contained in other hyperedges
Checking Acyclicity

Via the **GYO-reduction** (Graham, Yu and Ozsoyoglu)

1. Eliminate nodes occurring in at most one hyperedge

2. Eliminate hyperedges that are empty or contained in other hyperedges
Checking Acyclicity

Via the GYO-reduction (Graham, Yu and Ozsoyoglu)

1. Eliminate nodes occurring in at most one hyperedge

2. Eliminate hyperedges that are empty or contained in other hyperedges
Checking Acyclicity

Via the GYO-reduction (Graham, Yu and Ozsoyoglu)

1. Eliminate nodes occurring in at most one hyperedge

2. Eliminate hyperedges that are empty or contained in other hyperedges
Checking Acyclicity

Via the **GYO-reduction** (Graham, Yu and Ozsoyoglu)

1. Eliminate nodes occurring in at most one hyperedge
2. Eliminate hyperedges that are empty or contained in other hyperedges
Checking Acyclicity

Via the GYO-reduction (Graham, Yu and Ozsoyoglu)

1. Eliminate nodes occurring in at most one hyperedge

2. Eliminate hyperedges that are empty or contained in other hyperedges
Checking Acyclicity

Via the GYO-reduction (Graham, Yu and Ozsoyoglu)

1. Eliminate nodes occurring in at most one hyperedge
2. Eliminate hyperedges that are empty or contained in other hyperedges

Theorem: A hypergraph H is acyclic iff $\text{GYO}(H) = \emptyset$

\downarrow

checking whether H is acyclic is feasible in polynomial time, and if it is the case, a join tree can be found in polynomial time

\downarrow

Theorem: ACYCLICITY is in PTIME
Checking Acyclicity

Theorem: ACYCLICITY is in PTIME

NOTE: actually, we can check whether a CQ is acyclic in time $O(||Q||)$

linear time in the size Q
Evaluating Acyclic CQs

Theorem: ACQ-Evaluation is in PTIME

NOTE: actually, if $H(Q)$ is acyclic, then Q can be evaluated in time $O(||D|| \cdot ||Q||)$

linear time in the size of D and Q
Yannakaki’s Algorithm

Dynamic programming algorithm over the join tree

Given a database D, and an acyclic Boolean CQ Q

1. Compute the join tree T of $H(Q)$
2. Assign to each node of T the corresponding relation of D
3. Compute semi-joins in a bottom up traversal of T
4. Return YES if the resulting relation at the root of T is non-empty; otherwise, return NO
Yannakaki’s Algorithm: Step 1

\[Q := R_1(x_1, x_2, x_3), R_2(x_2, x_3), R_2(x_5, x_6), R_3(x_3), R_4(x_2, x_4, x_3) \]
Yannakaki’s Algorithm: Step 2
Yannakaki’s Algorithm: Step 3
Yannakaki’s Algorithm: Step 3
Yannakaki’s Algorithm: Step 3
Yannakaki’s Algorithm: Step 3
Yannakaki’s Algorithm: Step 4

YES
Recap

• “Good” classes of CQs for which query evaluation is tractable - conditions based on the graph or hypergraph of the CQ

• Acyclic CQs - their hypergraph is acyclic, can be checked in linear time

• Evaluating acyclic CQs is feasible in linear time (Yannakaki’s algorithm)