
Advanced Database Systems
Spring 2024

Lecture #15:

Hash-Based Indexing

R&G: Chapter 11

RECAP: FILE ORGANISATIONS

Method of arranging a file of records on secondary storage

Heap Files
Store records in no particular order

Sorted Files
Store records in sorted order, based on search key fields

Index Files
Store records to enable fast lookup and modifications

Tree-based & hash-based indexes

2

Disk Space Management

Buffer Management

Fi les & Index Management

Operator Execution

Query Planning

Database

SQL Cl ient

RECAP: IN-MEMORY HASH TABLE
(F ROM A L GOR I THMS & D A TA S T RU C TUR E S COUR S E)

A hash table implements an associative array (dictionary)
Data is stored as a collection of key-value pairs

It uses a hash function to compute an offset into an array of buckets (slots)
From which the desired value can be found

3

collision

Source: Introduction to Algorithms, 3rd edition

COLLISION RESOLUTION

By chaining
Link together entries hashed to the same value

Long chains can degrade search performance

4

Source: Introduction to Algorithms, 3rd edition

Open Addressing
Single giant table of slots

Hash to slot, then probe until a free slot is found

Variants: Linear Probing, Cuckoo, Robin Hood, …

Source: https://en.wikipedia.org/wiki/Hash_table

https://en.wikipedia.org/wiki/Hash_table

HASHING IN DATABASES

We want to be able to group together tuples with the same key value

Partition the data with hash function(s) applied on the key

All tuples with a certain key will be in the same partition

Useful for:

Removing duplicates (all duplicates will be grouped together)

Grouping data (for GROUP BY)

Looking up data using hash indexes

5

HASH-BASED INDEXING
Suitable for equality-based predicates

Cannot support range queries

Other query operations internally generate a flood of equality tests
E.g.: nested loop join, where hash index can make a real difference

Support in commercial DBMSs
Tree-structured indexes preferred since they cover the more general range predicates

But hash-based indexes are used for (index) nested loop joins

6

SELECT * FROM Customer WHERE A = constant

OVERVIEW

Static and dynamic hashing techniques exist
Trade-offs similar to ISAM vs. B+ trees

Static hashing schemes
Chained hashing

Dynamic hashing schemes
Extendible hashing

Linear hashing

7

STATIC CHAINED HASHING

Hash index is a collection of buckets

Build static hash index on column A

Allocate a fixed area of N (successive) pages, the so-called primary buckets

In each bucket, install a pointer to a chain of overflow pages (initially set to null)

Define a hash function h with range [0, …, N-1]

The domain of h is the type of A

e.g., h : INTEGER ⟶ [0, …, N-1], if A is of type INTEGER

The hash function determines the bucket where the desired value can be found

8

STATIC CHAINED HASH TABLE
Bucket = primary page plus zero or more overflow pages

Buckets contain index entries k* implemented using any of the variants A, B, or C

9

Overflow pages

Bucket 0

h(k)
record r

h looks at the search
key field k of record r

…

0

1

N-1

Primary
bucket pages

Bucket N-1

Bucket 1

…

STATIC CHAINED HASH TABLE MANAGEMENT

Operations: search, insert, delete
Compute h(k) on the search key field k of record r

Access the primary bucket page with number h(k)

Search for/insert/delete record on this page or, if needed, access the overflow pages

If overflow chain access is avoidable
search requires a single I/O operation

insert and delete require two I/O operations

10

HASH COLLISIONS AND OVERFLOW CHAINS

Hash collisions are unavoidable
For search keys k and k’, can happen h(k) = h(k’)

Search keys may not be unique (e.g., student age)

Even if unique, the search key space is much larger than # of buckets

Having as many primary bucket pages as different search keys in database ⇒ waste of space

Long overflow chains can degrade performance
Operation costs become non-uniform and unpredictable for a query optimiser

To reduce this problem, h needs to scatter search keys evenly across [0, …, N-1]

Large # of entries can still cause long chains (dynamic hashing to fix this)

11

HASH FUNCTIONS
How to map a large key space into a smaller domain

Real distributions of search key values are often non-uniform (skewed)

Trade-off between being fast vs. collision rate
We want a lightweight (non-cryptographic) hash function with a low collision rate

Simple hash function: h(k) = k mod N
Guarantees the range of h(k) to be [0,N-1]
Choosing N = 2d for some d effectively considers the least d bits of k only

Prime numbers work best for N

Better hash functions used in practice
xxHash (+ benchmark), MurmurHash, Google CityHash, Google FarmHash, CLHash

12

https://cyan4973.github.io/xxHash/
https://github.com/aappleby/smhasher
https://github.com/google/cityhash
https://github.com/google/farmhash
https://github.com/lemire/clhash

STATIC HASHING AND DYNAMIC FILES
If the data file grows,

the development of overflow chains spoils the index I/O behaviour (1–2 I/O operations)

If the data file shrinks,
a significant fraction of primary buckets may be (almost) empty – a waste of space

We may periodically rehash the data file to restore the ideal situation
(20% free space, no overflow chains)

Expensive – the index not usable while rehashing is in progress

As for ISAM, static hashing has advantages with concurrent access
Only need to lock one bucket page to store a new entry or extend the overflow chain

13

EXTENDIBLE HASHING

Situation: Bucket (primary page) is full and we want to insert. Why not
reorganize the index by doubling # of buckets?

Reading and writing all pages is expensive!

Idea: Use directory of pointers to buckets, double # of buckets by
doubling the directory, splitting just the bucket that overflowed

Directory much smaller than file, so doubling it is much cheaper

Only one page of data entries is split

No overflow pages!

14

EXTENDIBLE HASHING
15

18 (01000)

14 (01110)

221 (10101)

25 (11001)

211 (01011)

2

00
01
10
11

Note: we depict as index entries h(k) instead of k*

GLOBAL AND LOCAL DEPTH

Global depth (n at directory)

Use the least n bits of h(k) to find a
bucket pointer in the directory

The directory size is 2n

Local depth (d at individual buckets)

The hash values h(k) of all entries in
this bucket agree on their least d bits

16

18 (01000)

14 (01110)

221 (10101)

25 (11001)

211 (01011)

2global

00

01

10

11

local

local

local

EXTENDIBLE HASHING
17

18 (01000)

14 (01110)

221 (10101)

25 (11001)

211 (01011)

2global

00
01
10
11

local

local

local

Find A
hash(A) = 14 = 011102

To find a bucket for A, take the least 2 bits of hash(A)

EXTENDIBLE HASHING
18

18 (01000)

14 (01110)

221 (10101)

25 (11001)

211 (01011)

2global

00
01
10
11

local

local

local

Find A
hash(A) = 14 = 011102

Check if the bucket contains key A. Need to compare keys due to collisions!

EXTENDIBLE HASHING
19

18 (01000)

14 (01110)

221 (10101)

25 (11001)

211 (01011)

2global

00
01
10
11

local

local

local

Find A
hash(A) = 14 = 011102

Insert B
hash(B) = 29 = 111012

EXTENDIBLE HASHING
20

18 (01000)

14 (01110)

221 (10101)

25 (11001)

29 (11101)

211 (01011)

2global

00
01
10
11

local

local

local

Find A
hash(A) = 14 = 011102

Insert B
hash(B) = 29 = 111012

If the bucket still has capacity, store the index entry in it

EXTENDIBLE HASHING
21

18 (01000)

14 (01110)

221 (10101)

25 (11001)

29 (11101)

211 (01011)

2global

00
01
10
11

local

local

local

Find A
hash(A) = 14 = 011102

Insert B
hash(B) = 29 = 111012

Insert C
hash(C) = 5 = 001012

EXTENDIBLE HASHING
22

18 (01000)

14 (01110)

221 (10101)

25 (11001)

29 (11101)

211 (01011)

2global

00
01
10
11

local

local

local

Find A
hash(A) = 14 = 011102

Insert B
hash(B) = 29 = 111012

Insert C
hash(C) = 5 = 001012

Split bucket if full (allocate new bucket, increase local, redistribute)

23

18 (01000)

14 (01110)

325 (11001)

321 (10101)

29 (11101)

211 (01011)

local

local

local

local

Find A
hash(A) = 14 = 011102

Insert B
hash(B) = 29 = 111012

Insert C
hash(C) = 5 = 001012

EXTENDIBLE HASHING

2global

00
01
10
11

3 bits now needed to
discriminate between
these two buckets ⇒

double directory

24

18 (01000)

14 (01110)

325 (11001)

321 (10101)

29 (11101)

211 (01011)

3

000
001
010
011
100
101
110
111

global local

local

local

local

Find A
hash(A) = 14 = 011102

Insert B
hash(B) = 29 = 111012

Insert C
hash(C) = 5 = 001012

EXTENDIBLE HASHING

25

18 (01000)

14 (01110)

325 (11001)

321 (10101)

29 (11101)

5 (00101)

211 (01011)

3

000
001
010
011
100
101
110
111

global local

local

local

local

Find A
hash(A) = 14 = 011102

Insert B
hash(B) = 29 = 111012

Insert C
hash(C) = 5 = 001012

EXTENDIBLE HASHING

DIRECTORY DOUBLING

Double directory by copying its original pointers and ”fixing” pointer
to split bucket

Use of least significant bits enables efficient doubling via copying!

Splitting a bucket does not always require doubling the directory

Buckets with local depth < global depth have multiple pointers to them

Splitting such buckets does not require doubling

Modifying one or more bucket pointers in directory is sufficient

Directory can also shrink when buckets become empty

26

LINEAR HASHING

Linear hashing adapts its data structure to record insertions and deletions

Handles the problem of long overflow chains without using a directory

Idea: Use a family of hash functions h0, h1, h2, …

The subscript is called the hash function’s level

hlevel+1 doubles the range of hlevel

Split buckets in rounds
One by one from the first to the last bucket

In round level, use hlevel for unsplit buckets and hlevel+1 for split buckets

27

HASH FUNCTION FAMILY

Given an initial hash function h and an initial hash table with N buckets
Range of h is not 0 to N - 1

Define a family of hash functions h0, h1, h2, …
hlevel(k) = h(k) mod (2level · N) (level = 0, 1, 2, …)

Example:
Initial hash function h(k) = k

N = 4 initial buckets

h0(k) = k mod 4 h1(k) = k mod 8 h2(k) = k mod 16 …

28

LINEAR HASHING

Maintains a pointer that tracks the next bucket to split

When any bucket overflows, split the bucket at the pointer location
This may not be the bucket that triggered the split!

Split criterion is left up to the implementation
Space utilization of a bucket beyond some % capacity, or

Average length of overflow chains longer than p pages

29

LINEAR HASHING
30

8

20

5

9

13

6

7

11

0
1
2
3

h0(k) = k % 4

Split
Pointer

Note: the directory is shown here for presentation purpose, not needed in practice

Level = 0
Use h0 for all buckets

LINEAR HASHING
31

8

20

5

9

13

6

7

11

0
1
2
3

h0(k) = k % 4

Split
Pointer

Find 6
h0(6) = 6 % 4 = 2

LINEAR HASHING
32

8

20

5

9

13

6

7

11

0
1
2
3

h0(k) = k % 4

Split
Pointer

Find 6
h0(6) = 6 % 4 = 2

Insert 17
h0(17) = 17 % 4 = 1

LINEAR HASHING
33

8

20

5

9

13

6

7

11

0
1
2
3

h0(k) = k % 4

Split
Pointer

Find 6
h0(6) = 6 % 4 = 2

Insert 17
h0(17) = 17 % 4 = 1

17

Overflow!

LINEAR HASHING
34

8

20

5

9

13

6

7

11

0
1
2
3

h0(k) = k % 4
h1(k) = k % 8

Split
Pointer

Find 6
h0(6) = 6 % 4 = 2

Insert 17
h0(17) = 17 % 4 = 1

17

Overflow!4

Split bucket 0 using h1

LINEAR HASHING
35

8

5

9

13

6

7

11

0
1
2
3

h0(k) = k % 4
h1(k) = k % 8

Split
Pointer

Find 6
h0(6) = 6 % 4 = 2

Insert 17
h0(17) = 17 % 4 = 1

17

Overflow!4

20 Advance split pointer

LINEAR HASHING
36

8

5

9

13

6

7

11

0
1
2
3

h0(k) = k % 4
h1(k) = k % 8

Split
Pointer

Find 6
h0(6) = 6 % 4 = 2

Insert 17
h0(17) = 17 % 4 = 1

17

Overflow!4

20

LINEAR HASHING
37

8

5

9

13

6

7

11

0
1
2
3

h0(k) = k % 4
h1(k) = k % 8

Split
Pointer

Find 6
h0(6) = 6 % 4 = 2

Insert 17
h0(17) = 17 % 4 = 1

17

Overflow!4

20

Find 20
h0(20) = 20 % 4 = 0

Bucket 0 is split
(behind pointer)
⇒ use h1

LINEAR HASHING
38

8

5

9

13

6

7

11

0
1
2
3

h0(k) = k % 4
h1(k) = k % 8

Split
Pointer

Find 6
h0(6) = 6 % 4 = 2

Insert 17
h0(17) = 17 % 4 = 1

17

Overflow!4

20

Find 20
h0(20) = 20 % 4 = 0
h1(20) = 20 % 8 = 4

LINEAR HASHING

Since buckets are split round-robin, long overflow chains don’t develop!
After splitting the last bucket, start a new round: delete the first hash function,
increase level, and move back to beginning

The pointer can also move backwards when buckets are empty

Doubling of directory in Extendible Hashing is similar
Linear hashing doubles the directory gradually

Primary bucket pages are created in order. If they are allocated in sequence
too (so that finding i-th is easy), we don’t need a directory!

39

SUMMARY

Hash-based indexes
Best for equality searches, cannot support range searches

Static hashing
Can lead to long overflow chains

Extendible hashing
Avoids overflow chains by splitting a full bucket when a new entry is to be added to it

Linear hashing
Avoids directory by splitting buckets round-robin and using overflow pages

40

