
Advanced Database Systems
Spring 2024

Lecture #16:

Access Methods

R&G: Chapter 14

QUERY EVALUATION

DBMS query processors do not execute a query as a large monolithic block…

… but split the query into a number of specialised routines, the query operators

2

Challenges lurking behind a SQL query

SELECT C.cust_id, C.name, SUM(O.total) AS revenue
FROM Customer AS C JOIN Order AS O
ON C.cust_id = O.cust_id

WHERE C.zipcode BETWEEN 8000 AND 8999
GROUP BY C.cust_id, C.name
ORDER BY C.name

selection

aggregation

join

sorting

grouping

projection

QUERY PLAN

The operators from (extended) RA are
arranged in a tree called query plan

Edges indicate data flow (I/O of operators)

Data flows from the leaves towards the root

The output of the root is the query result

RA operators: selection (σ), projection (π), union (∪), intersection (∩),
difference (–), product (×), join (⋈), renaming (⍴), assignment (R ← S),
duplicate elimination (δ), aggregation (ɣ), sorting (𝜏), division (R / S)

3

SELECT R.id, S.value
FROM R, S
WHERE R.id = S.id
AND S.value > 100

π
⋈
σ

R S

R.id, S.value

R.id = S.id

value > 100

QUERY OPERATORS

For RA operator ⍟, a typical DBMS query engine may provide
different implementations ⍟’, ⍟’’, … all semantically equivalent to ⍟

with different performance characteristics

Variants (⍟’, ⍟’’, …) are called physical operators
implement the logical operator ⍟ of the relational algebra

Physical operators exploit properties such as:
presence or absence of indexes on the input file(s),

sortedness and size of the input file(s),

space in the buffer pool, buffer replacement policy, etc.

4

QUERY PLANS

Query optimisation = choose “best” physical plan
(among many alternatives)

5

Logical Plan Physical Plan

π
⋈
σ

R S

R.id, S.value

R.id = S.id

value > 100

π
⋈
σ

R S

R.id, S.value

R.id = S.id

value > 100

sorting

sort-merge

B+ tree

QUERY EVALUATION WORKFLOW

1. Parse given query

2. Translate query to RA

3. Enumerate plans by selecting physical
operators and order of operators

4. Estimate cost of physical query plans

5. Select the “optimal” query plan
Space of possible plans far too large

Some type of approximation is used
No guarantee to find optimal query plan

6

SQL query

logical query plan

physical query plan

physical query plan

+ estimated cost

optimal query plan

ACCESS METHODS

An access method (path) is a way the DBMS can
access the data stored in a table

Not defined in relational algebra

Includes selection predicates

Three basic approaches:
Sequential scan

Index scan

Multi-Index / “Bitmap” scan

Choice depends on #pages needed to read

8

SELECT R.id, S.value
FROM R, S

WHERE R.id = S.id
AND S.value > 100

π
⋈
σ

R S

R.id, S.value

R.id = S.id

value > 100

SEQUENTIAL SCAN
For each page in the table

Retrieve it from the buffer pool

Iterate over each tuple and check if
it matches (arbitrary) predicate p

The DBMS keeps an internal cursor that tracks the last examined page

I/O cost = read N pages

Number of output pages = sel(p) · N pages
sel(p) – selectivity of predicate p is the fraction of tuples satisfying predicate p

The selection operator often processes tuples “on-the-fly” (no writing to disk)

9

for page in table.pages:
 for t in page.tuples:
 if evalPred(p,t):
 // do something!

INDEX SCAN
The DBMS picks an index to find the tuples that the query needs

Which index to use depends on:
What attributes the index contains

What attributes the query references

The attributes’ value domains

Predicate composition

Whether the index has unique or non-unique keys

Whether the index is clustered or unclustered

…

10

INDEX SCAN
Suppose that a single table has two indexes

Tree index 1 on age

Index 2 on dept

11

SELECT * FROM Students
 WHERE age < 30
 AND dept = ‘CS’
 AND country = ‘UK’

There are 99 people under the
age of 30 but only 2 people in
the CS department

There are 99 people in the CS
department but only 2 people
under the age of 30

Scenario #1 Scenario #2

RECAP: INDEXES AND SELECTION
Basic selection: <key> <op> <constant>

Equality selections (op is =)

Range selections (op is one of <, >, <=, >=, BETWEEN)

B+ trees provide both

Hash indexes provide only equality

12

RECAP: INDEXES AND ORDERING

Can index on any ordered subset of columns. Order matters!
Determines the selection predicates supported

In an ordered index (e.g., B+ tree),
the keys are ordered lexicographically
by the search key columns:

Ordered by the 1st column

2 entries match on 1st column? Ordered by 2nd

Match on 1st and 2nd column? Ordered by 3rd

…

13

ID Name Age Salary

123 Jones 31 300

443 Smith 32 400

244 Gold 55 140

134 Alvaro 55 400

221 McDonald 79 300

Ordered lexicographically
by the search key (Age, Salary)

SEARCH KEY AND ORDERING

A tree index with a composite search key on columns (A1, A2, …, An)
“matches” a selection predicate if:

The predicate is a conjunction of m ≥ 0 equality clauses of the form:

A1 = c1 AND A2 = c2 … AND Am = cm

and at most 1 additional range clause of the form:

AND Am+1 op cm+1, where op is one of <, >, <=, >=, BETWEEN

Why does this “match”? Lookup and scan in lexicographic order
Can do a lookup on equality conjuncts to find start-of-range

Can do a scan of contiguous data entries at leaves
Scan while Am+1 op cm+1 holds. If no range clause, scan all matches to the first m conjuncts

14

SEARCH KEY AND ORDERING

A tree index on (Age, Salary) matches which range predicates?

Legend

15

Green for rows we visit that are in the range

Red for rows we visit that are not in the range

ID Name Age Salary

123 Jones 31 300

443 Smith 32 400

244 Gold 55 140

134 Alvaro 55 400

221 McDonald 79 300

SEARCH KEY AND ORDERING

A tree index on (Age, Salary) matches which range predicates?

Age = 31 and Salary = 400

16

ID Name Age Salary

123 Jones 31 300

443 Smith 32 400

244 Gold 55 140

134 Alvaro 55 400

221 McDonald 79 300

SEARCH KEY AND ORDERING

A tree index on (Age, Salary) matches which range predicates?

Age = 31 and Salary = 400

Age = 55 and Salary > 200

17

ID Name Age Salary

123 Jones 31 300

443 Smith 32 400

244 Gold 55 140

134 Alvaro 55 400

221 McDonald 79 300

SEARCH KEY AND ORDERING

A tree index on (Age, Salary) matches which range predicates?

Age = 31 and Salary = 400

Age = 55 and Salary > 200

Age > 31 and Salary = 400

18

ID Name Age Salary

123 Jones 31 300

443 Smith 32 400

244 Gold 55 140

134 Alvaro 55 400

221 McDonald 79 300

Not a lexicographic range.
Either visits useless rows or “bounce through” the index.

SEARCH KEY AND ORDERING

A tree index on (Age, Salary) matches which range predicates?

Age = 31 and Salary = 400

Age = 55 and Salary > 200

Age > 31 and Salary = 400

Age = 31

19

ID Name Age Salary

123 Jones 31 300

443 Smith 32 400

244 Gold 55 140

134 Alvaro 55 400

221 McDonald 79 300

Not a lexicographic range.
Either visits useless rows or “bounce through” the index.

SEARCH KEY AND ORDERING

A tree index on (Age, Salary) matches which range predicates?

Age = 31 and Salary = 400

Age = 55 and Salary > 200

Age > 31 and Salary = 400

Age = 31

Age > 31

20

ID Name Age Salary

123 Jones 31 300

443 Smith 32 400

244 Gold 55 140

134 Alvaro 55 400

221 McDonald 79 300

Not a lexicographic range.
Either visits useless rows or “bounce through” the index.

SEARCH KEY AND ORDERING

A tree index on (Age, Salary) matches which range predicates?

Age = 31 and Salary = 400

Age = 55 and Salary > 200

Age > 31 and Salary = 400

Age = 31

Age > 31

Salary = 300

21

ID Name Age Salary

123 Jones 31 300

443 Smith 32 400

244 Gold 55 140

134 Alvaro 55 400

221 McDonald 79 300

Not a lexicographic range.
Either visits useless rows or “bounce through” the index.

INDEX-ONLY SCAN

Index-only plans
Queries might be answered without
retrieving any tuples from one or more
of the table if a suitable index is available

Index-only scans
Retrieve only matching search keys from
index pages, without reading data pages

Often much faster than heap scans
due to small index sizes

22

SELECT E.dno, COUNT(*)
 FROM Employee E
GROUP BY E.dno

Index on E.dno

SELECT E.dno, MIN(E.salary)
 FROM Employee E
GROUP BY E.dno

Tree index on (E.dno, E.salary)

SELECT AVG(E.salary)
 FROM Employee E
 WHERE E.age = 25
 AND E.salary > 300

Tree index on (E.age, E.salary)

CLUSTERED B+ TREE SCAN

A clustered B+ tree index whose search key matches
the selection predicate p is clearly the superior method

I/O cost = 2-4 + (to reach a leaf page)

sel(p) · (# of leaf pages) (to scan leaf pages)

If variant B or C, we may also need to access data records

Requires reading sel(p) · (# of data pages) pages

But if the query uses only search key attributes, then no need to access data records!

23

. . .

UNCLUSTERED B+ TREE SCAN

Accessing an unclustered B+ tree index can be expensive
I/O cost ≈ # of matching leaf index entries

But index-only scans as fast as with clustered B+ trees!

If sel(p) indicates a large number of qualifying records, it pays off to
read the matching index entries <k, rid>

sort those entries on their rid field

access the pages in sorted rid order

Lack of clustering is a minor issue if sel(p) is close to 0

24

. . .

HASH INDEX SCAN
A hash index matches a selection predicate p only if:

1) p contains a term of the form A = c, and

2) the hash index has been built over column A

Composite search keys must be bounded entirely
A hash index on (age, dept) matches age = 27 AND dept = ‘CS’
But does not match age = 27

Use index to jump to the bucket of qualifying tuples
Scan pages in that bucket looking for matches
If search key values are unique, terminate after finding a match

Otherwise, scan all pages in that bucket

25

MULTI-INDEX SCAN
If there are multiple indexes that the DBMS can use for a query:

Compute sets of record IDs using each matching index

Combine these sets based on the query’s predicates (union vs. intersect)

Retrieve the records and apply any remaining terms

Set intersection can be done with bitmaps, hash tables, or Bloom filters

Postgres calls this Bitmap Scan

26

MULTI-INDEX SCAN
Suppose that a single table has two indexes

Tree Index 1 on age

Index 2 on dept

DBMS may decide to use both indexes
Retrieve the record ids satisfying age < 30 using Tree Index 1

Retrieve the record ids satisfying dept = ‘CS’ using Index 2

Take their intersection

Retrieve records and check country = ‘UK’

27

SELECT * FROM Students
 WHERE age < 30
 AND dept = ‘CS’
 AND country = ‘UK’

