
Advanced Database Systems
Spring 2024

Lecture #19:

Query Evaluation: Processing Models

R&G: Chapter 14

PROCESSING MODEL

Processing model defines how the DBMS executes a query plan
Different trade-offs for different workloads

Three main approaches:
Iterator model

Vectorised (batch) model

Materialisation model

2

ITERATOR MODEL

Each query plan operator implements three functions:
open() – initialise the operator’s internal state

next() – return either the next result tuple or a null marker if there are no more tuples

close() – clean up all allocated resources

Each operator instance maintains an internal state

Any operator can be input to any other (composability)
Since they all implement the same interface

Also called Volcano or Pipeline Model
Goetz Graefe. Volcano – An Extensible and Parallel Query Evaluation System. IEEE TKDE 1994

3

ITERATOR MODEL

Top-down plan processing

The whole plan is initially reset by calling open() on the root operator

The open() call is forwarded through the plan by the operators themselves

Control returns to the query processor

The root is requested to produce its next() result record

Operators forward the next() request as needed. As soon as the next result record is
produced, control returns to the query processor again

Used in almost every DBMS

4

ITERATOR MODEL

Query processor uses the following routine to evaluate a query plan

Output control (e.g., LIMIT) works easily with this model

5

Function eval(q)

q.open()
r = q.next()
while r != EOF do
/* deliver record r (print, ship to DB client) */
emit(r)
r = q.next()

/* resource deallocation now */
q.close()

EXAMPLE: SELECTION σp (ON-THE-FLY)
A streaming operator: small amount of work per tuple

Predicate p stored in internal state

6

open()

child.open()
close()

child.close()

next()

while (r = child.next()) != EOF do
if p(r) return r

return EOF

EXAMPLE: HEAP SCAN
Leaf of the query plan, often includes a selection predicate

8

open()

heap = open heap file for this relation // file handle
cur_page = heap.first_page() // first page
cur_slot = cur_page.first_slot() // first slot on that page

next()

if cur_page == NULL return EOF
current = tuple at (cur_page, cur_slot) // tuple to be returned
cur_slot = cur_slot.advance() // advance slot for subseq. calls
if cur_slot == NULL // advance to next page, first slot
cur_page = cur_page.advance()
if cur_page != NULL
cur_slot = cur_page.first_slot()

return current

close()

heap.close()

EXAMPLE: NESTED LOOPS JOIN
Volcano-style implementation of nested loops join R ⋈p S

9

open()

left_child.open()
right_child.open()
r = left_child.next()

close()

left_child.close()
right_child.close()

next()

while r != EOF do
while (s = right_child.next()) != EOF do
if p(r,s) return <r,s>

/* reset inner join input */
right_child.close()
right_child.open()
r = left_child.next()

return EOF

EXAMPLE: SORT (2-PASS)
10

open()

// first, all of pass 0, a blocking call
child.open()
repeatedly call child.next() and generate the sorted runs on disk, until child gives EOF
// second, set up for pass 1, assumes enough buffers to merge
open each sorted run file and load one page per run into input buffer for pass 1

next() // pass 1 merge (assumes enough buffers to merge)

output = min tuple across all buffers
if min tuple was last one in its buffer
fetch next page from that run into buffer

return output // (or EOF if no tuples remain)

close()

deallocate the runs files
child.close()

ITERATOR MODEL
11

SELECT R.id, S.value
FROM R, S

WHERE R.id = S.id
AND S.value > 100

π
⋈
σ

R S

R.id, S.value

R.id = S.id

value > 100

for t in child.next():
 emit(projection(t))

for t1 in left.next():
 buildHashTable(t1)
for t2 in right.next():
 if probe(t2): emit(t1⋈ t2)

for t in child.next():
 if evalPred(t): emit(t)

for t in S:
 emit(t)

for t in R:
 emit(t)

emit returns
control to caller

ITERATOR MODEL
12

SELECT R.id, S.value
FROM R, S

WHERE R.id = S.id
AND S.value > 100

π
⋈
σ

R S

R.id, S.value

R.id = S.id

value > 100

for t in child.next():
 emit(projection(t))1

for t1 in left.next():
 buildHashTable(t1)
for t2 in right.next():
 if probe(t2): emit(t1⋈ t2)

for t in child.next():
 if evalPred(t): emit(t)

for t in S:
 emit(t)

for t in R:
 emit(t)

2

3

4

5

ITERATOR MODEL

Allows for tuple pipelining
The DBMS process a tuple through as many operators as possible
before having to retrieve the next tuple

Reduces memory requirements and response time since each chunk
of input is propagated to the output immediately

Some operators will block until children emit all of their tuples
E.g., sorting, hash join, grouping and duplicate elimination over
unsorted input, subqueries

The data is typically buffered (“materialised”) on disk

13

ITERATOR MODEL

+ Nice & simple interface

+ Allows for easy combination of operators

– Next called for every single tuple & operator

– Virtual call via function pointer
Degrades branch prediction of modern CPUs

– Poor code locality and complex bookkeeping
Each operator keeps state to know where to resume

14

VECTORISATION MODEL

Like Iterator Model, each operator implements a next() function

Each operator emits a batch of tuples instead of a single tuple

The operator’s internal loop processes multiple tuples at a time

The size of the batch can vary based on hardware and query properties

Ideal for OLAP queries
Greatly reduces the number of invocations per operator

Operators can use vectorised (SIMD) instructions to process batches of tuples

15

VECTORISATION MODEL
16

SELECT R.id, S.value
FROM R, S

WHERE R.id = S.id
AND S.value > 100

π
⋈
σ

R S

R.id, S.value

R.id = S.id

value > 100

out = { }
for t in child.output():
 out.add(projection(t))
 if |out| > n: emit(out)

out = { }
for t1 in left.output():
 buildHashTable(t1)
for t2 in right.output():
 if probe(t2): out.add(t1⋈ t2)
 if |out| > n: emit(out)

out = { }
for t in child.output():
 if evalPred(t): out.add(t)
 if |out| > n: emit(out)

out = { }
for t in S:
 out.add(t)
 if |out| > n: emit(out)

out = { }
for t in R:
 out.add(t)
 if |out| > n: emit(out)

3 5

4

2

1

MATERIALISATION MODEL

Each operator processes its input all at once and then emits its output
The operator “materialises” its output as a single result

Bottom-up plan processing

Data not pulled by operators but pushed towards them

Leads to better code and data locality

Better for OLTP workloads

OLTP queries typically only access a small number of tuples at a time

Not good for OLAP queries with large intermediate results

17

MATERIALISATION MODEL
18

SELECT R.id, S.value
FROM R, S

WHERE R.id = S.id
AND S.value > 100

π
⋈
σ

R S

R.id, S.value

R.id = S.id

value > 100

out = { }
for t in child.output():
 out.add(projection(t))

out = { }
for t1 in left.output():
 buildHashTable(t1)
for t2 in right.output():
 if probe(t2): out.add(t1⋈ t2)

out = { }
for t in child.output():
 if evalPred(t): out.add(t)

out = { }
for t in S:
 out.add(t)

out = { }
for t in R:
 out.add(t)

1 2

3

4

5

PROCESSING MODELS: SUMMARY

Iterator / Volcano
Direction: Top-Down

Emits: Single Tuple

Target: General Purpose

19

Vectorised
Direction: Top-Down

Emits: Tuple Batch

Target: OLAP

Materialisation
Direction: Bottom-Up

Emits: Entire Tuple Set

Target: OLTP

