
08/03/2024

Advanced Database Systems
Spring 2024

Lecture #22:
Query Optimisation: Costing

R&G: Chapter 15

1

WHAT IS NEEDED FOR QUERY OPTIMISATION

Given: A closed set of operators
Relational operators (table in, table out)
Physical implementations (of those operators and a few more)

Plan space
Based on relational equivalences, different implementations

Cost estimation
Cost formula & size estimation for each physical operator

Search algorithm
To sift through the plan space and find lowest cost option!

2

2

COST ESTIMATION

For each plan considered, must estimate total cost:

Must estimate cost of each operation in plan tree

Depends on input cardinalities

Already discussed costs for various operators (sequential scan, index scan, joins, etc.)

Must estimate size of result for each operation in tree!

Because it determines downstream input cardinalities!

Use information about the input relations

For selections and joins, assume independence of predicates

In System R, cost boils down to a single number: #I/Os + CPU-factor * #tuples

Second term estimate the cost of tuple processing

13

13

STATISTICS AND CATALOGS

System catalogs store internal statistics about tables, attributes, and indexes
Typically contain at least:

Catalogs are updated periodically
Users can also manually refresh them (e.g,. ANALYZE in PostgreSQL)

Too expensive to do continuously. Lots of approximation anyway, so a little slop is OK

14

STATISTIC MEANING

NTuples # of tuples in a table (cardinality)

NPages # of disk pages in a table or index

Low/High min/max value in a column

NKeys # of distinct values in a column

Height the height of an index

Can also keep more detailed statistical
information on data values (e.g., histograms)

14

08/03/2024

SIZE ESTIMATION AND SELECTIVITY
Max output cardinality = product of input cardinalities

Selectivity (sel) associated with each term
Reflects the impact of the term in reducing result size
Selectivity = |output| / |input|
Sometimes called “Reduction Factor” (RF)
Always between 0 and 1

Avoid confusion:
“highly selective” in common English is opposite of a high selectivity value
(|output|/|input| high!)

15

15

SELECTION ESTIMATES

The selectivity (sel) of a predicate P is the fraction of tuples that qualify

Equality predicates on unique keys are
easy to estimate

What about more complex predicates?
What is their selectivity?

Formula depends on type of predicate
Equality, range, negation, conjunction, disjunction

16

SELECT * FROM Students
 WHERE sid = 123

SELECT * FROM Students
 WHERE age > 22
 AND dept = ‘CS’

SELECT * FROM Students
 WHERE age = 21

16

SELECTIONS - COMPLEX PREDICATES

Assume attribute age in relation Students has five distinct values (20-24)
NKeys(age) = 5

Equality predicate

sel(A = constant) = 1 / NKeys(A)

Example: sel(age = 22) = 1/5

Range predicate

sel(A > a) = (High(A) – a) / (High(A) – Low(A) + 1) (when A is integer-valued column)

sel(A > a) = (High(A) – a) / (High(A) – Low(A)) (when A is floating-valued column)

Example: sel(age > 22) = (24 – 22) / (24 – 20 + 1) = 2/5

17

SELECT * FROM Students
 WHERE age = 22

SELECT * FROM Students
 WHERE age > 22

17

SELECTIONS - COMPLEX PREDICATES

Equality predicate

sel(A = B) = 1 / max { NKeys(A), NKeys(B) } (handy for joins, too)

Why MAX?

 Assume that A-values and B-values are independent

 Let there be 2 distinct A-values { v1, v2 } and 10 distinct B-values { v1, …, v10 }

 What is the probability of matching values?

 P(A = B) = Σi P(A = vi, B = vi) = Σi P(A = vi) · P(B = vi)

 = (1/2 · 1/10) + (1/2 · 1/10) + (0 · 1/10) + …

 = 1/10 = 1 / max { 2, 10 }

18

18

08/03/2024

SELECTIONS - COMPLEX PREDICATES

Negation query
sel(not P) = 1 – sel(P)
Example: sel(age != 22) = 1 – 1/5 = 4/5
Observation: selectivity ≈ probability

Conjunction
sel(P1 ∧ P2) = sel(P1) · sel(P2)
Assumes that the predicates are independent

Disjunction
sel(P1 v P2) = sel(P1) + sel(P2) – sel(P1 ∧ P2)
Assumes that the predicates are independent

19

SELECT * FROM Students
 WHERE age != 22

SELECT * FROM Students
 WHERE age = 22
 AND name LIKE ‘A%’

SELECT * FROM Students
 WHERE age = 22
 OR name LIKE ‘A%’

19

RESULT SIZE ESTIMATION FOR JOINS
How to estimate the size of a join between R and S?

Key-foreign key join
Example: S has a foreign key referencing R

The foreign key constraint guarantees πA(S) ⊆ πA(R), thus |R ⋈ S| = |S|

Assumes non-null FK values (e.g., if A is part of a primary key in S); otherwise, |R ⋈ S| ≤ |S|

20

20

RESULT SIZE ESTIMATION FOR JOINS
General case: R join S on A which is not a key for either table

Recall algebraic equivalence: R ⋈p S ≡ σp(R x S)

Hence join selectivity is “just” selectivity sel(p) over a big input |R| · |S|!

Total rows: sel(p) · |R| · |S|

Equi-join on A
Match each R-tuple with S-tuple: |R ⋈ S| ≈ |R| · |S| / NKeys(S.A)

Symmetrically, for S: |R ⋈ S| ≈ |S| · |R| / NKeys(R.A)
The final estimate is the smaller of the two estimates
Overall: |R ⋈ S| ≈ |R| · |S| · 1 / max { NKeys(R.A), NKeys(S.A) }

21

sel(R.A = S.A)

21

MISSING STATISTICS? USE DEFAULT VALUES
22

Postgres 13.0
src/include/utils/selfuncs.h

22

08/03/2024

COST ESTIMATION

Our cost formulas assume that data values are uniformly distributed

23

5

10

0
1 152 3 4 5 6 7 8 9 10 11 12 13 14

Uniform Approximation

Distinct values of attribute

of occurrences

23

of occurrences

COST ESTIMATION

In practice, attribute values typically have a non-uniform distribution

24

5

10

0
1 152 3 4 5 6 7 8 9 10 11 12 13 14

Non-Uniform Distribution

Distinct values of attribute

24

HISTOGRAMS

To keep track of this non-uniformity for an attribute A, we can
maintain a histogram to approximate the actual distribution

Divide the active domain of A into adjacent intervals

Collect statistical parameters for each interval (bi-1, bi], for example

of tuples r with bi-1 < r.A ≤ bi

of distinct A values in interval (bi-1, bi]

The histogram intervals are also called buckets

25

25

TYPES OF HISTOGRAMS

Equi-width histograms
All buckets have the same width w or number of distinct values

I.e., boundary bi+1 = bi + w for some fixed width w

Equi-depth histograms

All buckets contain the same number of tuples (their width may vary)

Able to adapt to data skew (high uniformity)

The number of buckets is the tuning knob that defines the trade-off between
histogram resolution (estimation quality) and histogram size

Catalog space is limited!

26

26

08/03/2024

EQUI-WIDTH HISTOGRAMS

of distinct values = 16, # of tuples = 64

27

27

EQUI-WIDTH HISTOGRAMS

Maintain sum of value frequencies in each bucket
(in addition to bucket boundaries bi)

Divide active domain of A
into B buckets of equal width

Bucket width w:

28

28

EQUALITY SELECTION
29

w

29

RANGE SELECTION
30

30

08/03/2024

EQUI-DEPTH HISTOGRAMS

Divide active domain of attribute A into B buckets with roughly the same
number of tuples in each bucket

 Depth d of each bucket will be approximately |R|/ B

Maintain depth d and bucket boundaries bi

Intuition:
High-value frequencies are more important than low-value frequencies and
put in smaller buckets

Equi-depth provides better estimates than equi-width for highly frequent values

Resolution of histogram adapts to skewed value distributions

31

31

EQUI-DEPTH HISTOGRAM
32

32

COMPARISON

Equi-depth histogram
“invests” bytes in the
densely populated
customer age region
between 30 and 59

33

33

EQUALITY SELECTION
34

34

08/03/2024

RANGE SELECTION
35

35

SUMMARY: SELECTIVITY ESTIMATION

We need a way to estimate the size of the intermediate tables

Output size = input size * operator selectivity

Assumption 1: Uniform distribution within histogram bins
Within a bin, fraction of range = fraction of count

Assumption 2: Independent predicates
Selectivity of AND = product of selectivities of predicates

Selectivity of OR = sum of selectivities of predicates – product of selectivities of predicates

Selectivity of NOT = 1 – selectivity of predicates

General joins
Simply compute the selectivity of all predicates
And multiply by the product of the table sizes

36

36

