
Advanced Database Systems
Spring 2024

Lecture #23:
Query Optimisation: Searching

R&G: Chapter 15

QUERY OPTIMISATION

Plan space

Cost estimation

Search algorithm

2

FINDING THE “BEST” QUERY PLAN

Holy grail of any DBMS implementation

Challenge: There may be more than one way to answer a given query

Which one of the join operators should we pick?

With which parameters (block size, buffer allocation, …)?

Which join ordering?

3

FINDING THE “BEST” QUERY PLAN

The query optimiser

1. Enumerates all possible query execution plans
 If this yields too many plans, at least enumerate the “promising” plan candidates

2. Determines the cost (quality) of each plan

3. Chooses the best one as the final execution plan

Ideally: Want to find the best plan. Practically: Avoid worst plans!

4

ENUMERATION OF ALTERNATIVE PLANS

There are two main cases:

Single-table plans (base case)

Multiple-table plans (induction)

Single-table queries include selects, projects, and group-by / aggregate

Consider each available access path (file scan vs. index)

Choose the one with the least estimated cost

5

S INGLE-TABLE PLANS: COST ESTIMATES

Index I on primary key matches selection:
Cost is (Height(I) + 1) + 1 for a B+ tree (variant B or C)

Clustered index I matching selection:
(NPages(I) + NPages(R)) * selectivity (approximately)

Non-clustered index I matching selection:
(NPages(I) + NTuples(R)) * selectivity (approximately)

Sequential scan of file
NPages(R)

Recall: Must also charge for duplicate elimination if required

6

SINGLE-TABLE PLAN: EXAMPLE

If we have an index I on rating:
Cardinality

= 1/ NKeys(rating) · NTuples(Sailors) = 1/10 · 40,000 = 4000 tuples

Clustered index
1/ NKeys(rating) · (NPages(I) + NPages(Sailors)) = 1/10 · (50 + 500) = 55 pages are retrieved

Unclustered index
1/ NKeys(rating) · (NPages(I) + NTuples(Sailors)) = 1/10 · (50 + 40,000) = 4005 pages are retrieved

Costs on indexes are approximate as we might not need to retrieve all index pages

If we have an index I on sid:
Doing an index scan retrieves all pages & tuples
Clustered index: ~ (50 + 500) pages retrieved. Unclustered index: ~ (50 + 40,000) pages retrieved

Doing a file scan retrieves all file pages: 500

7

SELECT * FROM Sailors
 WHERE rating = 8

NTuples(Sailors) = 40,000
NPages(Sailors) = 500

NKeys(rating) = 10
 NPages(I) = 50

MULTIPLE-TABLE PLANS

We have translated the query into a graph of query blocks
Query blocks are essentially a multi-way product of relations with projections on top

Task: enumerate all possible execution plans
I.e., all possible 2-way join combinations for each query block

Example: three-way join
12 possible re-orderings

2 shown here

8

⋈
R S

T
⋈

⋈
T R

S
⋈

ENORMOUS SEARCH SPACE

We have not even considered different join algorithms!

9

of relations n # of different join trees

2 2

3 12

4 120

5 1,680

6 30,240

7 665,280

8 17,297,280

10 17,643,225,600

We need to restr ict search space!

MULTIPLE-TABLE QUERY PLANNING

Fundamental decision in IBM’s System R (late 1970):

Only consider left-deep join trees

10

⋈
S R

U
⋈T

⋈

left-deep right-deepbushy
(everything else)

⋈
SR U

⋈
T

⋈⨉
⋈
R S

T
⋈ U
⋈✓ ⨉

LEFT-DEEP JOIN TREES

DBMSs often prefer left-deep join trees

The inner (rhs) relation always is a base relation

Allows the use of index nested loops join

Allows for fully pipelined plans where intermediate
results are not written to temporary files

Should be factored into global cost calculation

Not all left-deep trees are fully pipelined (e.g., sort-merge join)

Pipelining requires non-blocking operators

Modern DBMSs may also consider non left-deep join trees

11

⋈
R S

T
⋈ U
⋈

MULTI-TABLE QUERY PLANNING

System R-style join order enumeration
Left-deep tree #1, Left-deep tree #2…

Eliminate plans with cross products immediately

Enumerate the plans for each operator
Hash, Sort-Merge, Nested Loop…

Enumerate the access paths for each table
Index #1, Index #2, Sequential scan…

Use dynamic programming to reduce the number of cost estimations

12

R S

⋈ T

⋈ U

⋈

S T

⋈ U

⋈ R

⋈

THE PRINCIPLE OF OPTIMALITY

The best overall plan is composed of best decisions on the subplans

Optimal result has optimal substructure

For example, the best left-deep plan to join tables R, S, T is either:

(The best plan for joining R, S) ⨝ T

(The best plan for joining R, T) ⨝ S

(The best plan for joining S, T) ⨝ R

This is great!

When optimising a subplan (e.g., R ⨝ S), don’t worry how it will be used later (e.g., when joining with T)!

When optimizing a higher-level plan (e.g., R ⨝ S ⨝ T), reuse the best results of subplans (e.g., R ⨝ S)!

13

EXAMPLE: DYNAMIC PROGRAMMING

Pass #1 (best 1-relation plans): Find best access
path to each relation (index vs. full table scans)

14

SELECT * FROM R, S, T
 WHERE R.A = S.A
 AND S.B = T.B

R ⋈ S
T

T ⋈ S
R

R ⋈ S ⋈ T
R
S
T

EXAMPLE: DYNAMIC PROGRAMMING

Pass #2 (best 2-relation plans): determine best join
order (R ⨝ S or S ⨝ R), choose best candidate

15

SELECT * FROM R, S, T
 WHERE R.A = S.A
 AND S.B = T.B

R ⋈ S
T

T ⋈ S
R

R ⋈ S ⋈ T
R
S
T

Hash Join
R.a = S.a

Hash Join
T.b = S.b

Sort-Merge Join
R.a = S.a

Sort-Merge Join
S.b = T.b

EXAMPLE: DYNAMIC PROGRAMMING

Pass #2 (best 2-relation plans): determine best join
order (R ⨝ S or S ⨝ R), choose best candidate

16

SELECT * FROM R, S, T
 WHERE R.A = S.A
 AND S.B = T.B

R ⋈ S
T

T ⋈ S
R

R ⋈ S ⋈ T
R
S
T

Hash Join
R.a = S.a

Hash Join
T.b = S.b

EXAMPLE: DYNAMIC PROGRAMMING

Pass #3 (best 3-relation plans):
best 2-relation plans + one other relation

17

SELECT * FROM R, S, T
 WHERE R.A = S.A
 AND S.B = T.B

R ⋈ S
T

T ⋈ S
R

R ⋈ S ⋈ T
R
S
T

Hash Join
R.a = S.a

Hash Join
T.b = S.b

Sort-Merge Join
S.a = R.a

Sort-Merge Join
S.b = T.b

Hash Join
S.b = T.b

Hash Join
S.a = R.a

EXAMPLE: DYNAMIC PROGRAMMING

Pass #3 (best 3-relation plans):
best 2-relation plans + one other relation

18

SELECT * FROM R, S, T
 WHERE R.A = S.A
 AND S.B = T.B

R ⋈ S
T

T ⋈ S
R

R ⋈ S ⋈ T
R
S
T

Hash Join
R.a = S.a

Hash Join
T.b = S.b

Sort-Merge Join
S.a = R.a

Hash Join
S.b = T.b

EXAMPLE: DYNAMIC PROGRAMMING

Pass #3 (best 3-relation plans):
best 2-relation plans + one other relation

19

SELECT * FROM R, S, T
 WHERE R.A = S.A
 AND S.B = T.B

R ⋈ S
T

T ⋈ S
R

R ⋈ S ⋈ T
R
S
T

Hash Join
T.b = S.b

Sort-Merge Join
S.a = R.a

INTERESTING ORDERS

System R-style query optimisers also consider interesting orders

Sorting orders of the input tables that may be beneficial later in the query plan

E.g., for a sort-merge join, projection with duplicate removal, order-by clause

Determined by ORDER BY and GROUP BY clauses in the input query or join
attributes of subsequent joins (to facilitate merging)

For each subset of relations, retain only:

Cheapest plan overall, plus

Cheapest plan for each interesting order of the tuples

20

EXAMPLE

Pass 1: Best plan for each relation
Sailors, Reserves: File scan

Boats: B+ tree on color

Also B+ tree on Sailors.sid as interesting order (output sorted on sid)

Also B+ tree on Reserves.bid as interesting order (output sorted on bid)

Also B+ tree on Reserves.sid as interesting order (output sorted on sid)

21

SELECT S.sid, COUNT(*) AS number
 FROM Sailors S
 JOIN Reserves R ON S.sid = R.sid
 JOIN Boats B ON R.bid = B.bid
 WHERE B.color = ‘red’
GROUP BY S.sid

Sailors:
 B+ tree on sid
Reserves:

 Clustered B+ tree on bid
 B+ tree on sid

Boats:
 B+ tree on color

EXAMPLE: PASS 2
Pass 2: Best 2-relation plans

Eliminate cross products

Retain cheapest plan for each (pair of relations, order)

22

// for each left-deep logical plan
 foreach plan P in Pass 1:
 foreach FROM table T not in P:
 // for each physical plan
 foreach access method M on T:
 foreach join method ⨝:
 generate P ⨝ M(T)

EXAMPLE: PASS 3

Using Pass 2 plans as outer relations, generate plans
for the next join in the same way as Pass 2

Example: the marked subplan is the best plan
for { Reserves, Boats } and interesting order
on Boats.bid and Reserves.bid

Then, add cost for group-by / aggregate:

This is the cost to sort the result by sid

… unless it has already been sorted by a previous operator

Finally, choose the cheapest plan

23

Reserves

Sailors⋈bid=bid

INDEX SCAN

SCAN

SORT MERGE

Boats

σ color=‘red’

INDEX SCAN

⋈sid=sid

INDEX NESTED LOOPS

SUMMARY

Query optimisation is an important task in a relational DBMS

Explores a set of alternative plans
Must prune search space; typically, left-deep plans only

Uses dynamic programming for join orderings

Must estimate cost of each plan that is considered
Must estimate the size of result and cost for each plan node

Query optimiser is the most complex part of database systems!

24

