
15/03/2024

Advanced Database Systems
Spring 2024

Lecture #26:
Recovery

R&G: Chapters 16 & 18

1

REVIEW: THE ACID PROPERTIES

Atomicity: All actions in the txn happen, or none happen

Consistency: If each txn is consistent and the DB starts
consistent, then it ends up consistent

Isolation: Execution of one txn is isolated from that of other txns

Durability: If a txn commits, its effects persist

2

The recovery manager ensures atomicity, DB consistency, and durability

2

MOTIVATION

Atomicity:
Transactions may abort (“rollback”)

Durability:
What if the DBMS stops running?

Desired behaviour after system restarts:
T1, T2 & T3 should be durable
T4 & T5 should be aborted (effects not seen)

3

T1
T2
T3
T4
T5

Crash!

3

TYPES OF FAILURES
Logical Errors

Txn cannot complete due to an internal error condition (e.g., integrity constraint violation)

Internal State Errors
DBMS must terminate an active transaction due to an error condition (e.g., deadlock)

Software Failures
Problem with the DBMS implementation (e.g., uncaught divide-by-zero exception)

Hardware Failures
The computer hosting the DBMS crashes (e.g., power plug gets pulled)

Fail-stop assumption: Non-volatile storage contents are not corrupted by system crash

Non-Repairable Hardware Failure
A head crash or similar disk failure destroys all or part of non-volatile storage

Destruction is assumed to be detectable (e.g., disk controller use checksums to detect failures)

No DBMS can recover from this! Database must be restored from an archived version (replica).

4

Transaction
Failures

System
Failures

Storage
Media
Failures

4

15/03/2024

CRASH RECOVERY

Recovery algorithms are techniques to ensure database consistency,
transaction atomicity, and durability despite failures

Recovery algorithms have two parts:

Actions during normal txn processing to ensure that the DBMS
can recover from a failure

Actions after a failure to recover the database to a state that
ensures atomicity, consistency, and durability

5

5

OBSERVATION

The primary storage location of the database is on non-volatile storage (disk),
but this is much slower than volatile storage (main memory)

Use volatile memory for faster access:

Bring pages into memory, perform writes in memory, write dirty pages back to disk

The DBMS needs to guarantee that:

The changes of any txn are durable once the DBMS has confirmed that it committed

No partial changes are durable if the txn aborted

How the DBMS supports this depends on how it manages the buffer pool…

6

6

HANDLING THE BUFFER POOL

Steal Policy

Whether the DBMS allows buffer pool frames with uncommitted updates to be
replaced (i.e., the corresponding dirty pages flushed to non-volatile storage)

STEAL: Is allowed NO-STEAL: Is not allowed

Force Policy

Whether the DBMS requires that all updates made by a txn are reflected on
non-volatile storage before the txn is allowed to commit

FORCE: Is enforced NO-FORCE: Is not enforced

7

7

NO-STEAL + FORCE
8

T
IM

E

BEGIN
R(A)
W(A)

BEGIN
R(B)
W(B)
COMMIT

⠇
ABORT

T1 T2

Schedule

Buffer Pool

A=1 B=9 C=7

A=1 B=9 C=7

8

15/03/2024

NO-STEAL + FORCE
9

T
IM

E

BEGIN
R(A)
W(A)

BEGIN
R(B)
W(B)
COMMIT

⠇
ABORT

T1 T2

Schedule

Buffer Pool

A=3 B=9 C=7

A=1 B=9 C=7

9

NO-STEAL + FORCE
10

T
IM

E

BEGIN
R(A)
W(A)

BEGIN
R(B)
W(B)
COMMIT

⠇
ABORT

T1 T2

Schedule

Buffer Pool

A=3 B=9 C=7

A=1 B=9 C=7

10

NO-STEAL + FORCE
11

T
IM

E

BEGIN
R(A)
W(A)

BEGIN
R(B)
W(B)
COMMIT

⠇
ABORT

T1 T2

Schedule

Buffer Pool

A=3 B=8 C=7

A=1 B=9 C=7

11

NO-STEAL + FORCE
12

T
IM

E

BEGIN
R(A)
W(A)

BEGIN
R(B)
W(B)
COMMIT

⠇
ABORT

T1 T2

Schedule

Buffer Pool

A=3 B=8 C=7

A=1 B=9 C=7

FORCE means that T2 changes must
be written to disk at this point

NO-STEAL means that T1 changes
cannot be written to disk yet

12

15/03/2024

NO-STEAL + FORCE
13

T
IM

E

BEGIN
R(A)
W(A)

BEGIN
R(B)
W(B)
COMMIT

⠇
ABORT

T1 T2

Schedule

Buffer Pool

A=3 B=8 C=7

A=1 B=8 C=7

FORCE means that T2 changes must
be written to disk at this point

NO-STEAL means that T1 changes
cannot be written to disk yet

13

NO-STEAL + FORCE
14

T
IM

E

BEGIN
R(A)
W(A)

BEGIN
R(B)
W(B)
COMMIT

⠇
ABORT

T1 T2

Schedule

Buffer Pool

A=3 B=8 C=7

A=1 B=8 C=7

Now it’s trivial to
rollback T1

14

NO-STEAL + FORCE

This approach is the easiest to implement

Never have to undo changes of an aborted txn because the changes
were not written to disk

Never have to redo changes of a committed txn because all the changes
are guaranteed to be written to disk at commit time

But has important drawbacks

Poor performance: flushing non-contiguous pages (random writes) is slow

Plus, what if DBMS crashes halfway through flushing? Not atomic

Memory requirements: NO-STEAL assumes that all pages modified by uncommitted
transactions can be accommodated in the buffer pool

15

15

MORE ON STEAL AND FORCE

STEAL: Why enforcing atomicity is hard?

Stealing frame F: Current page P in F is written to disk; some txn holds lock on P

What if the system crashes before the txn is finished?

Or what if the txn with the lock on P aborts?

Must remember the old value of P at steal time to support UNDOing the write to P

NO-FORCE: Why enforcing durability is hard?

What if the DBMS crashes before a modified page is written to disk?

Write as little as possible, in a convenient place, at commit time, to support REDOing
modifications

16

16

15/03/2024

BUFFER POOL POLICIES

Almost every DBMS uses STEAL + NO-FORCE

17

Recovery Performance

NO-STEAL STEAL

NO-FORCE – Slowest

FORCE Fastest –

Runtime Performance

NO-STEAL STEAL

NO-FORCE – Fastest

FORCE Slowest –

No Undo + No Redo

Undo + Redo

Undo: removing the effects of an incomplete or aborted txn

Redo: re-instating the effects of a committed txn for durability

17

BASIC IDEA: LOGGING

Record UNDO and REDO information, for every update, in a log file

Assume that the log is on stable storage

Log file is separated from actual data

Sequential writes to the log

Minimal info (diff) written to the log, so multiple updates fit in a single log page

Log contains sufficient information to perform the necessary undo
and redo actions to restore the database after a crash

18

18

WRITE-AHEAD LOGGING (WAL)

Before making a change in the database, record the change in a log file

The DBMS stages all log records of a txn in memory (usually backed by buffer pool)

All log records pertaining to an updated page must be written to non-volatile
storage before the page itself is overwritten to non-volatile storage

The log records contain UNDO info ⇒ can exploit to guarantee Atomicity

A txn is not considered committed until all of its log records including its
“commit” record are written to non-volatile storage

The log records contain REDO info ⇒ can exploit to guarantee Durability

19

19

WAL – EXAMPLE
21

T
IM

E

T1

Buffer Pool

A=1 B=5 C=7

A=1 B=5 C=7

Schedule WAL

BEGIN
W(A)
W(B)
⠇

COMMIT

<T1, BEGIN>

21

15/03/2024

WAL – EXAMPLE
22

T
IM

E

T1

Buffer Pool

A=8 B=5 C=7

A=1 B=5 C=7

Schedule WAL

1

2

BEGIN
W(A)
W(B)
⠇

COMMIT

<T1, BEGIN>
<T1, A, 1, 8>

22

WAL – EXAMPLE
23

T
IM

E

T1

Buffer Pool

A=8 B=9 C=7

A=1 B=5 C=7

Schedule WAL

BEGIN
W(A)
W(B)
⠇

COMMIT

<T1, BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>

23

WAL – EXAMPLE
24

T
IM

E

BEGIN
W(A)
W(B)
⠇

COMMIT

T1

Buffer Pool

A=8 B=9 C=7

A=1 B=5 C=7

Schedule

<T1, BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T1, COMMIT>

WAL
<T1, BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T1, COMMIT>

Txn result is now safe
to return to app

24

WAL – EXAMPLE
25

T
IM

E

BEGIN
W(A)
W(B)
⠇

COMMIT

T1

Buffer Pool A=1 B=5 C=7

Schedule WAL
001:<T1, BEGIN>
002:<T1, A, 1, 8>
003:<T1, B, 5, 9>
004:<T1, COMMIT>

Txn result is now safe
to return to app

X

X

Everything we need to
restore T1 is in the log!

25

15/03/2024

ARIES

Recovery algorithm developed at IBM Research in early 1990s

Write-Ahead Logging

Any change is recorded in log on stable storage before the change is written to disk

Must use STEAL + NO-FORCE buffer pool policies

Recovery in three phases:

Analyse: identify active txns and dirty pages at the time of crash

Redo: repeat history to restore exact state just before the crash

Undo: rollback all uncommitted txns

26

26

ARIES – RECOVERY PHASES

Phase #1 – Analysis

Read WAL from last checkpoint to identify dirty pages in
the buffer pool and active txns at the time of the crash

Phase #2 – Redo

Repeat all actions starting from an appropriate point in the log
(even txns that will abort)

Phase #3 – Undo

Reverse the actions of txns that did not commit before the crash

27

27

SUMMARY

Recovery Manager guarantees Atomicity & Durability
Supports rollback to guarantee consistency

Use WAL to allow STEAL + NO-FORCE w/o sacrificing correctness
Any change is recorded in log on stable storage before the change is written to disk

28

28

