
15/03/2024

Advanced Database Systems
Spring 2024

Lecture #27:
Distributed Transactions

R&G: Chapter 22

1

PARALLEL / DISTRIBUTED DBMSS

Why do we need parallel / distributed DBMSs?

Increased performance (throughput and latency)

Increased availability

Database is spread out across multiple resources to improve parallelism

Appears as a single database instance to the application

SQL query on a single-node DBMS must generate same result on a parallel or dist. DBMS

Due to principle of data independence

2

2

PARALLEL VS. DISTRIBUTED DBMSS

Parallel DBMSs

Nodes are physically close to each other

Nodes connected with high speed LAN

Communication cost is assumed to be small

Distributed DBMSs

Nodes can be far from each other

Nodes connected using public network

Communication cost and problems cannot be ignored

3

3

OBSERVATION

A distributed transaction can access data located on multiple nodes

The DBMS must guarantee the ACID properties

We have not discussed how to ensure that all nodes agree to commit a
transaction and then to make sure it does commit if we decide that it should

What happens if a node fails?

What happens if our messages show up late?

What happens if we don't wait for every node to agree?

5

5

15/03/2024

OUTLINE

Distributed Locking

Distributed Deadlock Detection

Distributed Two-Phase Commit (2PC)

Recovery and 2PC

6

6

DISTRIBUTED CONCURRENCY CONTROL

Consider a shared-nothing distributed DBMS

For today, assume partitioning but no replication of data

Each transaction arrives at some node:

The “coordinator” for the transaction

7

Coord Node NNode 1 . . .

T1

7

WHERE IS THE LOCK TABLE?

Typical design: Locks partitioned with the data

Independent: each node manages “its own” lock table

Works for objects that fit on one node (pages, tuples)

For coarser-grained locks, assign a “home” node

Object being locked (table, DB) exists across nodes

8

Node 2 Node NNode 1 . . .

8

WHERE IS THE LOCK TABLE?, PART 2

Typical design: Locks partitioned with the data

Independent: each node manages “its own” lock table

Works for objects that fit on one node (pages, tuples)

For coarser-grained locks, assign a “home” node

Object being locked (table, DB) exists across nodes

These locks can be partitioned across nodes

9

Node 2 Node NNode 1 . . .

“Boats”“Sailors” “Reserves”

9

15/03/2024

WHERE IS THE LOCK TABLE?, PART 3

Typical design: Locks partitioned with the data

Independent: each node manages “its own” lock table

Works for objects that fit on one node (pages, tuples)

For coarser-grained locks, assign a “home” node

Object being locked (table, DB) exists across nodes

These locks can be partitioned across nodes

Or centralized at one node

10

Node 2 Node NNode 1 . . .

“Boats”

“Sailors”
“Reserves”

10

IGNORE GLOBAL LOCKS FOR A MOMENT…

Every node does its own locking

Clean and efficient

“Global” issues remain:

Deadlock

Commit/Abort

11

Node 2 Node NNode 1 . . .

11

OUTLINE

Distributed Locking

Distributed Deadlock Detection

Distributed Two-Phase Commit (2PC)

Recovery and 2PC

12

12

WHAT COULD GO WRONG? #1

Deadlock detection

No cycles in local waits-for graphs, but there’s a cycle in global waits-for graph

13

Node 2 Node NNode 1 . . .

T1 T2

T3

T1 T2

T3

T1 T2

T3

13

15/03/2024

WHAT COULD GO WRONG? #1, PART 2

Deadlock detection

Easy fix: periodically union at designated node. If a cycle is detected, abort one txn

14

Node 2 Node NNode 1 . . .

T1 T2

T3

T1 T2

T3

T1 T2

T3

14

OUTLINE

Distributed Locking

Distributed Deadlock Detection

Distributed Two-Phase Commit (2PC)

Recovery and 2PC

15

15

WHAT COULD GO WRONG? #2
Failures/Delays: Nodes

Commit? Abort?

When the node comes back, how does it recover in a world that moved forward?

16

Node NNode 2 . . . Node 1

16

WHAT COULD GO WRONG? #2, PART 2
Failures/Delays: Nodes

Failures/Delays: Messages
Non-deterministic reordering per channel, interleaving across channels

“Lost” (very delayed) messages

17

Node 3 Node NNode 2 . . . Node 1

17

15/03/2024

WHAT COULD GO WRONG? #2, PART 3
Failures/Delays: Nodes

Failures/Delays: Messages
Non-deterministic reordering per channel, interleaving across channels

“Lost” (very delayed) messages

18

Node 3 Node NNode 2 . . . Node 1

18

WHAT COULD GO WRONG? #2, PART 4
Failures/Delays: Nodes

Failures/Delays: Messages
Non-deterministic reordering per channel, interleaving across channels

“Lost” (very delayed) messages

How do all nodes agree on Commit vs. Abort?

19

Node 3 Node NNode 2 . . . Node 1

19

BASIC IDEA: DISTRIBUTED VOTING

Vote for commitment

How many votes does a commit need to win?

Any single node could observe a problem (e.g., deadlock, constraint violation)

Hence must be unanimous

20

Coord Node NNode 2 . . . Node 1

T1

20

DISTRIBUTED VOTING? HOW?

How do we implement distributed voting?!

In the face of message/node failure/delay?

21

Coord Node NNode 2 . . . Node 1

T1

21

15/03/2024

2-PHASE COMMIT

A.k.a. 2PC. (Not to be confused with 2PL!)

Phase 1: Voting phase

Coordinator tells participants to “prepare”

Participants respond with yes/no votes

Unanimity required for yes!

Phase 2: Commit phase

Coordinator disseminates result of the vote

 Need to do some logging for failure handling....

22

22

2-PHASE COMMIT, PART 1

Phase 1:

Coordinator tells participants to “prepare”

Participants respond with yes/no votes

Unanimity required for commit!

Phase 2:

Coordinator disseminates result of the vote

Participants respond with Ack

23

Part2

Part3

Part1

Coord

Prepare(T1)Prepare(T1)Prepare(T1)Prepare(T1)

23

2-PHASE COMMIT, PART 2

Phase 1:

Coordinator tells participants to “prepare”

Participants respond with yes/no votes

Unanimity required for commit!

Phase 2:

Coordinator disseminates result of the vote

Participants respond with Ack

24

Part2

Part3

Part1

Coord

Prepare(T1)

Prepare(T1)

Prepare(T1)

Prepare(T1)

24

Yes(T1c)

Yes(T1b)

Yes(T1a)Yes(T1a)

Yes(T1b)

2-PHASE COMMIT, PART 3

Phase 1:

Coordinator tells participants to “prepare”

Participants respond with yes/no votes

Unanimity required for commit!

Phase 2:

Coordinator disseminates result of the vote

Participants respond with Ack

25

Part2

Part3

Part1

Coord

Yes(T1c)

25

15/03/2024

2-PHASE COMMIT, PART 4

Phase 1:

Coordinator tells participants to “prepare”

Participants respond with yes/no votes

Unanimity required for commit!

Phase 2:

Coordinator disseminates result of the vote

Participants respond with Ack

26

Part2

Part3

Part1

Coord

Yes(T1a)

Yes(T1b)

Yes(T1c)

Yes(T1a)
Yes(T1b)
Yes(T1c)

26

Commit(T1)Commit(T1)Commit(T1)

2-PHASE COMMIT, PART 5

Phase 1:

Coordinator tells participants to “prepare”

Participants respond with yes/no votes

Unanimity required for commit!

Phase 2:

Coordinator disseminates result of the vote

Participants respond with Ack

27

Part2

Part3

Part1

Coord

Commit(T1)

27

Commit(T1)

Commit(T1)

Commit(T1)

2-PHASE COMMIT, PART 6

Phase 1:

Coordinator tells participants to “prepare”

Participants respond with yes/no votes

Unanimity required for commit!

Phase 2:

Coordinator disseminates result of the vote

Participants respond with Ack

28

Part2

Part3

Part1

Coord

Commit(T1)

28

2-PHASE COMMIT, PART 7

Phase 1:

Coordinator tells participants to “prepare”

Participants respond with yes/no votes

Unanimity required for commit!

Phase 2:

Coordinator disseminates result of the vote

Participants respond with Ack

29

Ack(T1c)

Ack(T1b)

Part2

Part3

Part1

Coord

Ack(T1a)Ack(T1a)

Ack(T1b)

Ack(T1c)

29

15/03/2024

2-PHASE COMMIT, PART 8

Phase 1:

Coordinator tells participants to “prepare”

Participants respond with yes/no votes

Unanimity required for commit!

Phase 2:

Coordinator disseminates result of the vote

Participants respond with Ack

30

Ack(T1c)

Ack(T1b)

Part2

Part3

Part1

Coord

Ack(T1a)

Ack(T1a)
Ack(T1b)
Ack(T1c)

30

ONE MORE TIME, WITH LOGGING

Phase 1:

Coordinator tells participants to “prepare”

Participants generate prepare/abort record

Participants flush prepare/abort record

Participants respond with yes/no votes

Coordinator generates commit record

Coordinator flushes commit record

31

Coord

WAL

WAL (Tail)

Part

WAL

WAL (Tail)

Prepare(T1)

31

ONE MORE TIME, WITH LOGGING, PART 2

Phase 1:

Coordinator tells participants to “prepare”

Participants generate prepare/abort record

Participants flush prepare/abort record

Participants respond with yes/no votes

Coordinator generates commit record

Coordinator flushes commit record

32

Coord

WAL

WAL (Tail)

Part

WAL

WAL (Tail)

Prepare(T1)

32

ONE MORE TIME, WITH LOGGING, PART 3

Phase 1:

Coordinator tells participants to “prepare”

Participants generate prepare/abort record

Participants flush prepare/abort record

Participants respond with yes/no votes

Coordinator generates commit record

Coordinator flushes commit record

33

Coord

WAL

WAL (Tail)

Part

WAL

010:<T1, PREPARE>

WAL (Tail)

33

15/03/2024

ONE MORE TIME, WITH LOGGING, PART 4

Phase 1:

Coordinator tells participants to “prepare”

Participants generate prepare/abort record

Participants flush prepare/abort record

Participants respond with yes/no votes

Coordinator generates commit record

Coordinator flushes commit record

34

Coord

WAL

WAL (Tail)

Part

010:<T1, PREPARE>

WAL

WAL (Tail)

34

ONE MORE TIME, WITH LOGGING, PART 5

Phase 1:

Coordinator tells participants to “prepare”

Participants generate prepare/abort record

Participants flush prepare/abort record

Participants respond with yes/no votes

Coordinator generates commit record

Coordinator flushes commit record

35

Coord

WAL

WAL (Tail)

Part

010:<T1, PREPARE>

WAL

WAL (Tail)

Yes(T1a)

35

ONE MORE TIME, WITH LOGGING, PART 6

Phase 1:

Coordinator tells participants to “prepare”

Participants generate prepare/abort record

Participants flush prepare/abort record

Participants respond with yes/no votes

Coordinator generates commit record

Coordinator flushes commit record

36

Coord

WAL

WAL (Tail)

Part

010:<T1, PREPARE>

WAL

WAL (Tail)

Yes(T1a)

36

ONE MORE TIME, WITH LOGGING, PART 7

Phase 1:

Coordinator tells participants to “prepare”

Participants generate prepare/abort record

Participants flush prepare/abort record

Participants respond with yes/no votes

Coordinator generates commit record

Coordinator flushes commit record

37

Coord

WAL

080:<T1, COMMIT>

WAL (Tail)

Part

010:<T1, PREPARE>

WAL

WAL (Tail)

37

15/03/2024

ONE MORE TIME, WITH LOGGING, PART 8

Phase 1:

Coordinator tells participants to “prepare”

Participants generate prepare/abort record

Participants flush prepare/abort record

Participants respond with yes/no votes

Coordinator generates commit record

Coordinator flushes commit record

38

080:<T1, COMMIT>

Coord

WAL

WAL (Tail)

Part

010:<T1, PREPARE>

WAL

WAL (Tail)

38

ONE MORE TIME, WITH LOGGING, PART 9

Phase 2:

Coordinator broadcasts result of vote

Participants make commit/abort record

Participants flush commit/abort record

Participants respond with Ack

Coordinator generates end record

Coordinator flushes end record

39

080:<T1, COMMIT>

Coord

WAL

WAL (Tail)

Part

010:<T1, PREPARE>

WAL

WAL (Tail)

Commit(T1)

39

ONE MORE TIME, WITH LOGGING, PART 10

Phase 2:

Coordinator broadcasts result of vote

Participants make commit/abort record

Participants flush commit/abort record

Participants respond with Ack

Coordinator generates end record

Coordinator flushes end record

40

080:<T1, COMMIT>

Coord

WAL

WAL (Tail)

Part

010:<T1, PREPARE>

WAL

WAL (Tail)

Commit(T1)

40

ONE MORE TIME, WITH LOGGING, PART 11

Phase 2:

Coordinator broadcasts result of vote

Participants make commit/abort record

Participants flush commit/abort record

Participants respond with Ack

Coordinator generates end record

Coordinator flushes end record

41

080:<T1, COMMIT>

Coord

WAL

WAL (Tail)

Part

010:<T1, PREPARE>

WAL

020:<T1, COMMIT>

WAL (Tail)

41

15/03/2024

ONE MORE TIME, WITH LOGGING, PART 12

Phase 2:

Coordinator broadcasts result of vote

Participants make commit/abort record

Participants flush commit/abort record

Participants respond with Ack

Coordinator generates end record

Coordinator flushes end record

42

080:<T1, COMMIT>

Coord

WAL

WAL (Tail)

Part

010:<T1, PREPARE>
020:<T1, COMMIT>

WAL

WAL (Tail)

42

ONE MORE TIME, WITH LOGGING, PART 13

Phase 2:

Coordinator broadcasts result of vote

Participants make commit/abort record

Participants flush commit/abort record

Participants respond with Ack

Coordinator generates end record

Coordinator flushes end record

43

080:<T1, COMMIT>

Coord

WAL

WAL (Tail)

Part

010:<T1, PREPARE>
020:<T1, COMMIT>

WAL

WAL (Tail)

Ack(T1a)

43

ONE MORE TIME, WITH LOGGING, PART 14

Phase 2:

Coordinator broadcasts result of vote

Participants make commit/abort record

Participants flush commit/abort record

Participants respond with Ack

Coordinator generates end record

Coordinator flushes end record

44

080:<T1, COMMIT>

Coord

WAL

WAL (Tail)

Part

010:<T1, PREPARE>
020:<T1, COMMIT>

WAL

WAL (Tail)

Ack(T1a)

44

ONE MORE TIME, WITH LOGGING, PART 15

Phase 2:

Coordinator broadcasts result of vote

Participants make commit/abort record

Participants flush commit/abort record

Participants respond with Ack

Coordinator generates end record

Coordinator flushes end record

45

080:<T1, COMMIT>

Coord

WAL

090:<T1, TXN-END>

WAL (Tail)

Part

010:<T1, PREPARE>
020:<T1, COMMIT>

WAL

WAL (Tail)

45

15/03/2024

ONE MORE TIME, WITH LOGGING, PART 16

Phase 2:

Coordinator broadcasts result of vote

Participants make commit/abort record

Participants flush commit/abort record

Participants respond with Ack

Coordinator generates end record

Coordinator flushes end record

46

080:<T1, COMMIT>
090:<T1, TXN-END>

Coord

WAL

WAL (Tail)

Part

010:<T1, PREPARE>
020:<T1, COMMIT>

WAL

WAL (Tail)

46

2PC IN A NUTSHELL
47

Participant
Log

T
IM

E

Coordinator
Log

Prepare

Vote Yes/No

Commit/Abort

Ack

Prepare* or Abort*
(with coord ID)

Commit* or Abort*

End

Commit* or Abort*
(commit includes all

participant IDs)

asterisk*: wait for log flush
before sending next msg

47

OUTLINE

Distributed Locking

Distributed Deadlock Detection

Distributed Two-Phase Commit (2PC)

Recovery and 2PC

48

48

FAILURE HANDLING

Assume everybody recovers eventually

Big assumption!

Depends on WAL (and short downtimes)

Coordinator notices a Participant is down?

If participant hasn’t voted yet, coordinator aborts transaction

If waiting for a commit Ack, hand to “recovery process”

Participant notices Coordinator is down?

If it hasn’t yet logged prepare, then abort unilaterally

If it has logged prepare, hand to “recovery process”

Note

Thinking a node is “down” may be incorrect!

49

49

15/03/2024

INTEGRATION WITH ARIES RECOVERY

On recovery

Assume there’s a “Recovery Process” at each node

It will be given tasks to do by the Analysis phase of ARIES

These tasks can run in the background (asynchronously)

Note: multiple roles on a single node

Coordinator for some transactions, Participant for others

50

50

HOW DOES RECOVERY PROCESS WORK?

Coordinator recovery process gets inquiry from a “prepared” participant

If transaction table at coordinator says aborting/committing

Send appropriate response and continue protocol on both sides

If transaction table at coordinator says nothing: send ABORT

Only happens if coordinator had also crashed before writing commit/abort

Inquirer does the abort on its end

53

53

2PC IN A NUTSHELL
54

Participant
Log

T
IM

E

Coordinator
Log

Prepare

Vote Yes/No

Commit/Abort

Ack on commit

Prepare* or Abort*
(with coord ID)

Commit* or Abort*

End
(on commit)

Commit* or Abort*
(commit includes all

participant IDs)

asterisk*: wait for log flush
before sending next msg

CRASH!

CRASH!

54

RECOVERY: THINK IT THROUGH

What happens when coordinator recovers?

With “commit” and “end”?

With just “commit”?

With “abort”?

What happens when participant recovers:

With no prepare/commit/abort?

With “prepare” and “commit”?

With just “prepare”?

With “abort”?

55

Commit iff coordinator
logged a commit

55

15/03/2024

RECOVERY: THINK IT THROUGH

What happens when coordinator recovers?

With “commit” and “end”? Nothing

With just “commit”? Rerun Phase 2!

With “abort”? Nothing (presumed abort)

What happens when participant recovers:

With no prepare/commit/abort? Nothing (presumed abort)

With “prepare” and “commit”? Send Ack to coordinator

With just “prepare”? Send inquiry to coordinator

With “abort”? Nothing (presumed abort)

56

Commit iff coordinator
logged a commit

56

2PC + STRICT 2PL
Ensure point-to-point messages are densely ordered

1,2,3,4,5…

Dense per (sender/receiver/transaction ID)

Receiver can detect anything missing or out-of-order

Receiver buffers message k+1 until [1..k] received

Effect: receiver considers messages in order

Commit:
When a participant processes Commit request, it has all the locks it needs

Flush log records and drop locks atomically

Abort:
Its safe to abort autonomously, locally: no cascade

Log appropriately to 2PC (presumed abort in our case)

Perform local Undo, drop locks atomically

57

57

AVAILABILITY CONCERNS

What happens while a node is down?
Other nodes may be in limbo, holding locks

So certain data is unavailable

This may be bad...

Dead Participants? Respawned by coordinator
Recover from log
And if the old participant comes back from the dead, just ignore it and tell it to recycle itself

Dead Coordinator?
This is a problem!
3-Phase Commit was an early attempt to solve it

Paxos Commit provides a more comprehensive solution
Gray + Lamport paper. Out of scope for this course

58

58

SUMMARY

Data partitioning provides scale-up

Can also partition lock tables and logs

But need to do some global coordination:

Deadlock detection: easy

Commit: trickier

Two-phase commit is a classic distributed consensus protocol

Logging/recovery aspects unique:

Many distributed protocols gloss over

But 2PC is unavailable on any single failure

This is bad news for scale-up, because odds of failure go up with #machines

Paxos Commit addresses that problem

59

59

