
22/03/2024

Advanced Database Systems
Spring 2024

Lecture #28:
Parallel Query Processing

R&G: Chapter 22

1

RECAP: PARALLEL / DISTRIBUTED DBMSS

Why do we need parallel / distributed DBMSs?

Increased performance (throughput and latency)

Increased availability

Database is spread out across multiple resources to improve parallelism

Appears as a single database instance to the application

SQL query on a single-node DBMS must generate same result on a parallel or dist. DBMS

Due to principle of data independence

2

2

RECAP: PARALLEL VS. DISTRIBUTED DBMSS

Parallel DBMSs

Nodes are physically close to each other

Nodes connected with high speed LAN

Communication cost is assumed to be small

Distributed DBMSs

Nodes can be far from each other

Nodes connected using public network

Communication cost and problems cannot be ignored

3

3

SYSTEM ARCHITECTURE

A DBMS's architecture specifies what shared resources are directly
accessible to CPUs

The goal is to parallelize operations across multiple resources

CPU, memory, network, disk

This affects how CPUs coordinate with each other and where they
retrieve/store objects in the database

4

4

22/03/2024

SYSTEM ARCHITECTURE
5

Network

Network

Network

Shared Memory Shared Disk Shared Nothing

5

SHARED MEMORY

CPUs have access to common memory
address space via a fast interconnect

Efficient to send messages between processors

Each processor has a global view of all
the in-memory data structures

Each DBMS instance on a processor has to
“know” about the other instances

Sometimes called “shared everything”

6

Network

6

SHARED DISK

All CPUs can access a single logical disk
directly via an interconnect but each CPU
has its own private memory

Can scale execution layer independently from
the storage layer

Easy consistency since there is a single copy of DB

Easy fault tolerance

The disk becomes a bottleneck with many CPUs

7

Network

7

SHARED NOTHING

Each DBMS instance has its own CPU, memory, and disk

Typically instances run on commodity hardware

Nodes only communicate with each other
via network

Easy to increase capacity

Just keep putting nodes on the network!

Hard to ensure consistency

Nodes need to communicate over the network

8

Network

8

22/03/2024

TYPES OF PARALLELISM IN DBMSS

Inter-Query: Different queries are executed concurrently

Increases throughput & reduces latency

Does require parallel-aware concurrency control

Intra-Query: Execute the operations of a single query in parallel

Decreases latency for long-running queries

Inter-operator: Execute operators of a query in parallel (exploits pipelining)

Intra-operator: Get all CPUs to compute a given operation (scan, sort, join)

9

9

INTRA-QUERY – INTER-OPERATOR

Intra-query (within a single query)

Inter-operator (between operators)

10

h(g(f (x1)))

Pipeline Parallelism

R

⋈
⋈

S T

⋈
U

Logical Plan

g(f(x2))

f (x3)

Bushy (Tree) Parallelism

Scan R Scan S

⋈

mat

⋈

Scan T Scan U

⋈

mat

10

INTRA-QUERY – INTRA-OPERATOR

Intra-query (within a single query)

Intra-operator (within a single operator)

11

R

⋈
S

Logical Plan Partition Parallelism

Scan R Scan S

⋈

Scan R Scan S

⋈

Scan R Scan S

⋈

11

DATABASE PARTITIONING

Split database across multiple resources:

Disks, nodes, processors

Sometimes called “sharding”

The DBMS executes query fragments on each partition and
then combines the results to produce a single answer

12

12

22/03/2024

HORIZONTAL PARTITIONING

Split a table’s tuples into disjoint subsets

Choose column(s) that divides the database equally in terms of size, load, or usage

Each tuple contains all of its columns

Three main approaches:

Round-robin partitioning

Hash partitioning

Range partitioning

14

14

Distribute tuples to partitions in a round-robin fashion

Good for spreading load

ROUND-ROBIN PARTITIONING
15

Partitions

101 a XXY 2019-11-29

102 b XYX 2019-11-28

103 c YXX 2019-11-29

104 d XYY 2019-11-27

105 e YXY 2019-11-29

Table
P1

P2

P3

P4

P1

P1 P2

P3 P4

15

Also good for equijoins, group-by

HASH PARTITIONING
16

Partitions

101 a XXY 2019-11-29

102 b XYX 2019-11-28

103 c YXX 2019-11-29

104 d XYY 2019-11-27

105 e YXY 2019-11-29

Table

SELECT * FROM table
 WHERE partitionKey = ?

Ideal Query:

hash(a) % 4 = P2

hash(b) % 4 = P4

hash(c) % 4 = P3

hash(d) % 4 = P2

hash(e) % 4 = P1

P1 P2

P3 P4

Partition Key

16

Also good for equijoins, group-by, range queries

RANGE PARTITIONING
17

Partitions

101 a XXY 2019-11-29

102 b XYX 2019-11-28

103 c YXX 2019-11-29

104 d XYY 2019-11-27

105 e YXY 2019-11-29

Table

SELECT * FROM table
 WHERE partitionKey = ?

Ideal Query:

P1

P1

P1

P2

P2

P1
[a-c]

P2
[d-e]

P3
[f-m]

P4
[n-z]

Partition Key

17

22/03/2024

REPLICATION

The DBMS can replicate data across nodes to increase availability

Partition replication: Store a copy of an entire partition in multiple locations

Table replication: Store an entire copy of a table in each partition

Usually small, read-only tables

The DBMS ensures updates are propagated to all replicas in either case

18

18

DATA TRANSPARENCY

Users should not be required to know where data is physically located,
how tables are partitioned or replicated

A SQL query that works on a single node DBMS should work the same
on a distributed DBMS

19

19

INTRA-OPERATOR PARALLELISM

20

20

PARALLEL SCANS

Scan in parallel, merge (concat) output

Ex: Sequential scan of 100TB at 0.5 GB/sec takes ~200,000 sec = ~2.31 days

 But 100-way parallel scan takes only 2,000 sec = 33 minutes

σp: skip entire sites that have no tuples satisfying p
Possible with range or hash partitioning

21

21

22/03/2024

LOOKUP BY KEY

Data partitioned on function of key?
Great! Route lookup only to relevant node

Otherwise

Must broadcast lookup request to all nodes

22

A...E F...J K...NO...S T...Z

Range

A...E F...J K...NO...S T...Z

Hash

22

PARALLEL HASHING

Use a hash function hn to partition the data over all the nodes (hash
partitioning), then run external hashing on each node independently

Similar to recursive partitioning

23

hp hr

hp hr
hn

Single Node

Multiple Nodes

23

PARALLEL HASH JOIN

Hash partition both relations on the join key, then perform a normal hash
join on each node independently

24

R

R

R

S

hp

S

S

hn

Phase 1: Partition R and S
across different nodes

S

R

S

R

S

R

R ⋈ S

R ⋈ S

R ⋈ S

hr

Phase 2: Within each node, perform
local (grace) hash joins

24

PARALLEL SORTING

Partition the data over machines with range partitioning

Perform external sorting on each machine independently
(each machine holds a different range of data)

25

range

pass 2, . . . pass 0 pass 1

. . .

25

22/03/2024

PARALLEL SORT MERGE JOIN
Range partition both relations on the join key over machines

Use the same ranges for both relations

Perform sort merge join on each machine independently

26

R

R

R

S

S

S

range
S
R

R ⋈ S

S
R

R ⋈ S

S
R

R ⋈ S

. . .pass 0 pass n (merge, with optimisation)

. . .

26

OBSERVATION

The efficiency of a distributed join depends on the input tables’
partitioning schemes

Naïve approach puts entire tables on a single node, then performs the join

You lose the parallelism of a distributed DBMS

Costly data transfer over the network

To join R and S, the DBMS needs to get matching tuples on the same node

Once there, it then executes the same join algorithms that we discussed earlier

27

27

SCENARIO #1

One table is replicated at every node.
Each node joins its local data and then
sends their results to a coordinating node

28

SELECT * FROM R JOIN S
 ON R.id = S.id

P1: R ⋈ S P2: R ⋈ S

Replicated Replicated

id: 101-200id: 1-100

S

R (id)

S

R (id)

28

SCENARIO #1

One table is replicated at every node.
Each node joins its local data and then
sends their results to a coordinating node

29

SELECT * FROM R JOIN S
 ON R.id = S.id

P1: R ⋈ S

P2: R ⋈ S

Replicated Replicated

id: 101-200id: 1-100

S

R (id)

S

R (id)

R ⋈ S

29

22/03/2024

SCENARIO #2

Tables are partitioned on the join attribute.
Each node performs the join on local data
and then sends to a node for coalescing

30

SELECT * FROM R JOIN S
 ON R.id = S.id

P1: R ⋈ S P2: R ⋈ S

id: 1-100 id: 101-200

id: 101-200id: 1-100

S (id)

R (id)

S (id)

R (id)

30

SCENARIO #2

Tables are partitioned on the join attribute.
Each node performs the join on local data
and then sends to a node for coalescing

31

SELECT * FROM R JOIN S
 ON R.id = S.id

P2: R ⋈ S

id: 1-100 id: 101-200

id: 101-200id: 1-100

S (id)

R (id)

S (id)

R (id)

P1: R ⋈ S
R ⋈ S

31

SCENARIO #3

Both tables are partitioned on different keys.
If one of the tables is small, then the DBMS
broadcasts that table to all nodes

32

SELECT * FROM R JOIN S
 ON R.id = S.id

val: 1-50 val: 51-100

id: 101-200id: 1-100

S (val)

R (id)

S (val)

R (id)

32

SCENARIO #3

Both tables are partitioned on different keys.
If one of the tables is small, then the DBMS
broadcasts that table to all nodes

33

SELECT * FROM R JOIN S
 ON R.id = S.id

val: 1-50 val: 51-100

id: 101-200id: 1-100

S (val)

R (id)

S (val)

R (id)

S

33

22/03/2024

SCENARIO #3

Both tables are partitioned on different keys.
If one of the tables is small, then the DBMS
broadcasts that table to all nodes

34

SELECT * FROM R JOIN S
 ON R.id = S.id

val: 1-50 val: 51-100

id: 101-200id: 1-100

S (val)

R (id)

S (val)

R (id)

SS

34

SCENARIO #3

Both tables are partitioned on different keys.
If one of the tables is small, then the DBMS
broadcasts that table to all nodes

35

SELECT * FROM R JOIN S
 ON R.id = S.id

val: 1-50 val: 51-100

id: 101-200id: 1-100

S (val)

R (id)

S (val)

R (id)

SS

P1: R ⋈ S P2: R ⋈ S

35

SCENARIO #3

Both tables are partitioned on different keys.
If one of the tables is small, then the DBMS
broadcasts that table to all nodes

36

SELECT * FROM R JOIN S
 ON R.id = S.id

val: 1-50 val: 51-100

id: 101-200id: 1-100

S (val)

R (id)

S (val)

R (id)

SS

P2: R ⋈ S

P1: R ⋈ S
R ⋈ S

36

SCENARIO #4

Both tables are not partitioned on the join key.
The DBMS copies the tables by reshuffling
them across nodes

37

SELECT * FROM R JOIN S
 ON R.id = S.id

val: 1-50 val: 51-100

name: N-Zname: A-M

S (val)

R (name)

S (val)

R (name)

37

22/03/2024

SCENARIO #4

Both tables are not partitioned on the join key.
The DBMS copies the tables by reshuffling
them across nodes

38

SELECT * FROM R JOIN S
 ON R.id = S.id

val: 1-50 val: 51-100

name: N-Zname: A-M

R (id) id: 101-200

S (val)

R (name)

S (val)

R (name)

38

SCENARIO #4

Both tables are not partitioned on the join key.
The DBMS copies the tables by reshuffling
them across nodes

39

SELECT * FROM R JOIN S
 ON R.id = S.id

val: 1-50 val: 51-100

name: N-Zname: A-M

R (id) R (id)id: 1-100 id: 101-200

S (val)

R (name)

S (val)

R (name)

39

SCENARIO #4

Both tables are not partitioned on the join key.
The DBMS copies the tables by reshuffling
them across nodes

40

SELECT * FROM R JOIN S
 ON R.id = S.id

val: 1-50 val: 51-100

name: N-Zname: A-M

S (id) id: 101-200

R (id) R (id)id: 1-100 id: 101-200

S (val)

R (name)

S (val)

R (name)

40

SCENARIO #4

Both tables are not partitioned on the join key.
The DBMS copies the tables by reshuffling
them across nodes

41

SELECT * FROM R JOIN S
 ON R.id = S.id

val: 1-50 val: 51-100

name: N-Zname: A-M

S (id) S (id)id: 1-100 id: 101-200

R (id) R (id)id: 1-100 id: 101-200

S (val)

R (name)

S (val)

R (name)

41

22/03/2024

SCENARIO #4

Both tables are not partitioned on the join key.
The DBMS copies the tables by reshuffling
them across nodes

42

SELECT * FROM R JOIN S
 ON R.id = S.id

val: 1-50 val: 51-100

name: N-Zname: A-M

P1: R ⋈ S P2: R ⋈ S

S (id) S (id)id: 1-100 id: 101-200

R (id) R (id)id: 1-100 id: 101-200

S (val)

R (name)

S (val)

R (name)

42

SCENARIO #4

Both tables are not partitioned on the join key.
The DBMS copies the tables by reshuffling
them across nodes

43

SELECT * FROM R JOIN S
 ON R.id = S.id

val: 1-50 val: 51-100

name: N-Zname: A-M

P2: R ⋈ S

S (id) S (id)id: 1-100 id: 101-200

R (id) R (id)id: 1-100 id: 101-200

P1: R ⋈ S
R ⋈ S

S (val)

R (name)

S (val)

R (name)

43

QUERY PLANNING

All the optimizations that we talked about before are still applicable
in a distributed environment

Predicate Pushdown

Early Projections

Optimal Join Orderings

But now the DBMS must also consider the location of data at each
partition when optimizing

44

44

QUERY PLANNING – CONT.
Query optimisation needs to consider network cost

Either in terms of time or total amount of data sent among nodes

Less important is the number of I/Os on a given node

Nodes may have to receive data from other nodes to start processing data

If a table is sorted on only a single machine for example

Since we have multiple nodes to use, we now care about bottlenecks

Uneven number of tuples on each node causes the total time spent doing operations
(scanning, sorting, etc.) to be the maximum time spent of each individual node

E.g., : Node 1 takes 500ms and Node 2 takes 300ms, then overall parallel query takes 500ms

45

45

22/03/2024

SUMMARY

Parallelism natural to query processing
Intra-op, inter-op, & Inter-query parallelism all possible

Shared nothing vs. Shared memory vs. Shared disk
Shared memory: easiest SW, costliest HW, doesn’t scale indefinitely

Shared nothing: cheap, scales well, harder to implement

Shared disk: a middle ground

Most DB operations can be done partition-parallel
Sort, hash, sort-merge join, hash-join…

Everything is harder in a parallel/distributed setting
Query execution, concurrency control, recovery

46

46

