A9\ THE UNIVERSITY

Advanced Database Systems
Spring 2024

Lecture #29:
Revision |

ADMINISTRIVIA

New quiz deadline: Thursday, 11 April at noon
Last tutorial is this week

Final exam
Topics covered in the lectures and tutorials, excluding guest lecture from week 10
6-8 questions, all mandatory

Can use a calculator

PLAN FOR TODAY

Files, Pages, Records
Buffer Management
Sorting

Joins

FILES, PAGES, RECORDS

Tables stored as logical files consisting of pages, each containing a
collection of records

File (corresponds to a table)
Page (many per file)
Record (many per page)

The unit of access to physical disk is the page

11/0 = read or write 1 page

PAGE BASICS

The page header keeps track of the records in the page

The page header may contain fields such as:

. Page Header
Number of records in the page

Pointer to segment of free space in the page

Bitmap indicating which parts of the page are in use

Page

FIXED-LENGTH RECORDS

Fixed-length records = record lengths are fixed and field lengths are consistent

Packed Records: no gaps Unpacked Records: allow gaps
between records, record ID between records, use a bitmap to
is location in page keep track of where the gaps are

Page Header A — Header X[IXIXIX[T T J| A —

Free Space

Free Space

VARIABLE-LENGTH RECORDS

Variable-length records may not have fixed & consistent field lengths

We can store variable-length records with an array of field offsets:

CHAR

INT

INT VARCHAR VARCHAR

Header

M

42

Each record contains a record header

1234 Jones Edinburgh

Variable length fields are placed after fixed length fields

Record header stores field offset (where variable length field ends)

QUESTION 1

Consider the following relation:

Assume record header stores only pointers (4B) to variable-length fields

CREATE TABLE Customer (
customer_id INTEGER PRIMARY KEY,
age INTEGER NOT NULL,
name VARCHAR(10) NOT NULL,
address VARCHAR(20) NOT NULL

Record header size = ???
Min record size = ???

Max record size = ???

QUESTION 1, PART 2

Consider the following relation:

Assume record header stores only pointers (4B) to variable-length fields

CREATE TABLE Customer (
customer_id INTEGER PRIMARY KEY,
age INTEGER NOT NULL,
name VARCHAR(10) NOT NULL,
address VARCHAR(20) NOT NULL

Record header size = 8
Min record size =16

Max record size = 46

HEADER INT INT

VARCHAR(10) VARCHAR(20)

? 1234 42

Jones 10 Crichton St.

SLOTTED PAGES

Most common layout scheme is called slotted pages

Slot directory maps “slots” to the
records’ starting position offsets

Record ID = (page ID, slot ID)

Header keeps track of:
The number of used slots

The offset of the last slot used

Records stored at the end of page

Slot directory

Record D Record C

Record B Record A

Y
Fixed/Var-length records

10

QUESTION 2

Suppose the Customer relation is stored
using a slotted page layout

Page header stores the number of records
and a pointer to free space

Directory slot stores a pointer and length
Record C

Page size is 8KB

Record B Record A

Max number of records = ???

_ HEADER INT INT VARCHAR(10) VARCHAR(20) \

- [¢] | 1234 42 Jones 10 Crichton St.
|

QUESTION 2, PART 2

Suppose the Customer relation is stored
using a slotted page layout

Page header stores the number of records
and a pointer to free space (4B + 4B)

Directory slot stores a pointer and length (4B + 4B)
Record C

Page size is 8KB

Record B Record A

Max number of records

_ HEADER INT INT VARCHAR(10) VARCHAR(20) \

= (page size - header size) / (min record size + slot size) Q] =] @
=(8192-8)/(16 + 8) = 341 records '

BUFFER MANAGEMENT

13

BUFFER MANAGER

Layer that manages which pages are loaded in memory

Controls when pages are read from & written to disk

Buffer Pool
When no space in memory, decides what page to evict
Directory Header
Decision process is the page replacement policy R
Big impact on I/0s depending on access pattern

Common policies:

LRU (Least Recently Used)

Directory Header Header
HEE
MRU (Most Recently Used) mmm B Pazet [Page2
Clock

Database File

15

ref=1

-

Arrange frames in a circle (like numbers on a clock) ref=1 ref=1

CLOCK P
ref=1

Efficient approximation of LRU (

Advance clock hand around the clock to find pages to evict -

Only do this if you need to evict a page

To make this approximate least recently used (rather than least recently /oaded):
add a reference bit to each frame

Set to 1 on load/hit, O if clock hand passes the frame and the frame is unpinned

Evict unpinned frame if clock hand reaches it and bit =0

(bit = 0 means less recently used than those with bit = 1)

QUESTION 3

Page access sequence:

ABCDEBADC CAEC

Assume pages are immediately unpinned
after being pinned

Buffer hits = ???

N
/

ref=0

4
_

ref=0

ref=0

16

ref=0

QUESTION 3, PART 2

Page access sequence:

EBADCAEC

1

Pages A, B, C, D populate the buffer pool

The clock hand stays still

Buffer hits (so far) =0

17

QUESTION 3, PART 3

Page access sequence:

EBADCAEC

1

Page E not present = buffer miss!
Find first frame with ref =0

If ref =1, unset it and move the hand

Buffer hits (so far) =0

18

QUESTION 3, PART 4

Page access sequence:

EBADCAEC

1

Resets bits of A, B, C, D while moving the hand

First frame with ref = 0 holds A

Buffer hits (so far) =0

19

QUESTION 3, PART 5

Page access sequence:

BADCAEC

1

Resets bits of A, B, C, D while moving the hand
First frame with ref = 0 holds A

Replace A with E, set reference bit, move the hand

Buffer hits (so far) =0

20

QUESTION 3, PART 6

Page access sequence:

ADCAEC

1

Page B is present = buffer hit!

Set refence bit

Buffer hits (so far) = 1

21

QUESTION 3, PART 7

Page access sequence:

ADCAEC

1

Page A not present = buffer miss!

Buffer hits (so far) = 1

22

QUESTION 3, PART 8

Page access sequence:

ADCAEC

1

Page A not present = buffer miss!

Unset refence bit for B, move the hand

Buffer hits (so far) = 1

23

ref=1

ref=0 n I B ref=0
-

ref=0

QUESTION 3, PART 9

Page access sequence:

DCAEC

1

Page A not present = buffer miss!
Unset refence bit for B, move the hand

Replace C with A, set refence bit, move the hand

Buffer hits (so far) = 1

24

QUESTION 3, PART 10

Page access sequence:

CAEC

1

Page D is present = buffer hit!

Set refence bit

Buffer hits (so far) =2

25

QUESTION 3, PART 11

Page access sequence:

CAEC

1

Page Cis not present = buffer miss!

Buffer hits (so far) =2

26

QUESTION 3, PART 12

Page access sequence:

CAEC

1

Page Cis not present = buffer miss!

Unset ref bits for D & E, move the hand to B

Buffer hits (so far) =2

27

28

QUESTION 3, PART 13

Page dCCesS sequence:
ref=0

AEC -
Page Cis not present = buffer miss! ref=0 n I ref=1
Unset ref bits for D & E, move the hand to B
Replace B with C, set refence bit, move the hand \ J

ref=1

Buffer hits (so far) =2

QUESTION 3, PART 14

Page access sequence:

AEC

1

Pages A, E, C are present = buffer hits!

Buffer hits (so far) =2

29

ref=0

ref=0 n I ref=1
N %

ref=1

QUESTION 3, PART 15

Page access sequence:

1

Pages A, E, C are present = buffer hits!

Set their reference bits

Buffer hits =5

30

ref=1

ref=0 n I ref=1
N %

ref=1

SORTING

31

SORTING

We first sort small amounts of
data into runs of sorted tuples

Given runs of sorted tuples, we
can merge them into 1 larger
run of sorted tuples

Same as in-memory merge sort

Stream in the two runs and
stream out the new run

PASS
#0

PASS
#1

PASS
#2

PASS
#3

32

1-PAGE
RUNS

2-PAGE
RUNS

4-PAGE
RUNS

8-PAGE
RUNS

GENERAL EXTERNAL MERGE SORT

How many passes do we need?
We sort B pages at once, so we have [N/B] runs after Pass 0
We merge B-1 pages at once, so we have to do [logg.; (# runs)| merge passes

So we have 1 + [logg_, [N/B]| passes over the data

/O cost:

Read and write each page per pass

Total 1/0 cost = 2N - (1 + [logg., [N/B]])

33

GENERAL EXTERNAL MERGE SORT

Number of passes = 1 + [logg_; |[N/B]|

How many pages can be sorted in P passes?
Two passes can sort B - (B-1) pages
Three passes can sort B - (B-1)? pages

P passes can sort B - (B-1)" pages

34

QUESTION 4

Suppose the page size is 4 KB and the buffer pool size is 1 MB

How many I/Os are required to sort a relation of size 800 KB?

What is the size of the largest relation that would need two passes to sort?

35

QUESTION 4, PART 2

Suppose the page size is 4 KB and the buffer pool size is 1 MB
B =1024KB / 4KB = 256 pages

How many I/Os are required to sort a relation of size 800 KB?
N = 800KB / 4KB = 200 pages

The relation can completely fit into the buffer, so we only need to read it in, sort it

(no I/0s required for sorting), then write the sorted pages back to disk. Total: 400 1/0s.

What is the size of the largest relation that would need two passes to sort?
Max number of pages: B - (B- 1) = 256 - 255 = 65,280
Max relation size = 65,280 - 4KB = 261,120KB

36

JOINS

37

NESTED LOOPS JOINS

Simple / Page / Block Nested Loop Joins:

(all pages of left table) + (number of passes of right table) * (all pages of right table)

Number of passes:
Simple: one per left row
Page: one per left page

Block: one per left block

39

NESTED LOOPS JOINS

Simple Nested Loops Join: pages(R) + tuples(R) - pages(S)
Page Nested Loops Join: pages(R) + pages(R) - pages(S)

Block Nested Loops Join: pages(R) + [pages(R)/ (B - 2)]| - pages(S)

where B is the number of available buffer pages

40

43

INDEX NESTED LOOPS JOIN

Index Nested Loop Join: pages(R) + tuples(R) - cost to find matching S tuples

(all pages of left table) + (number of right index lookups) - (cost of right index lookup)

Cost to find matching S tuples:
Variant A: just cost to traverse root to leaf + read all the leaves with matching tuples

Variant B/C: cost of retrieving RIDs (similar to Variant A) + cost to fetch actual tuples

11/0 per page if clustered, 1 1/0 per tuple if not

SORT MERGE JOIN

Sort Merge Join:

Cost to sort R using external sorting +
Cost to sort S using external sorting +

pages(R) + pages(S)

Note that, if a relation is already sorted, we can exclude that cost

48

SORT MERGE JOIN

Sort Merge Join optimisation: combine last sort pass with merging

Normally:

Last sort pass:
Load runs R1, R2, R3 into buffers, merge into run R, stream (write) R to disk
Load runs 51,52, S3 into buffers, merge into run S, stream (write) S to disk
Merging:

Load run R and run S into buffers, merge into R = S

51

52

SORT MERGE JOIN

Sort Merge Join optimisation: combine last sort pass with merging

Sort-merge join optimisation:
Last sort pass:
Load runs R1, R2, R3 into buffers, merge-interunR,-stream{write)}R-to-disk
Load runs S1,S2, S3 into buffers, merge-interun-S,-stream-(write)-S-to-disk
Merging:
Loadrun-R-andrun-Sinto-buffers, merge intoR >« S

Note that in this example, previously we needed only 3 input buffers, but the optimized
version needed 6 input buffers!

SORT MERGE JOIN

Sort Merge Join optimisation: combine last sort pass with merging

Sort-merge join optimisation:

In general, this optimization is only possible if you happen to have enough buffers to
stream BOTH last runs in memory

You can also do a partial version where you finish sorting one table normally, then do
the join with the runs of the unmerged table and the one run of the merged table

You save 2 - (pages(R) + pages(S)) by doing this optimization

The partial version saves either 2 - pages(R) or 2 - pages(S), depending on which table
you wait to merge

53

GRACE HASH JOIN

Grace Hash Join: similar to external hash, but...

Partitioning phase: Partition R into B-7 buckets and also S into B-7 buckets
Recursively partition pairs of R and S partitions until one partition in a pair fits in B-2 pages

Joining phase: for each pair of partitions where at least one is at most B-2 pages,
Load smaller side (e.g., R) into memory, and make a hash table

Stream in pages of S — match against hash table — stream out matches

Cost: Depends on the construction of the tables. It's similar to external
hashing, but your parameters for stopping are different

56

