
Advanced Database Systems
Spring 2024

Lecture #29:

Revision I

ADMINISTRIVIA

New quiz deadline: Thursday, 11 April at noon

Last tutorial is this week

Final exam

Topics covered in the lectures and tutorials, excluding guest lecture from week 10

6-8 questions, all mandatory

Can use a calculator

2

PLAN FOR TODAY

Files, Pages, Records

Buffer Management

Sorting

Joins

3

FILES, PAGES, RECORDS

Tables stored as logical files consisting of pages, each containing a
collection of records

File (corresponds to a table)
 Page (many per file)
 Record (many per page)

The unit of access to physical disk is the page

1 I/O = read or write 1 page

4

PAGE BASICS

The page header keeps track of the records in the page

The page header may contain fields such as:

Number of records in the page

Pointer to segment of free space in the page

Bitmap indicating which parts of the page are in use

5

Page Header

Page

FIXED-LENGTH RECORDS

Fixed-length records = record lengths are fixed and field lengths are consistent

6

Page Header

C D

A

Free Space

E

B

C D

A

Free Space

E

Header

Packed Records: no gaps
between records, record ID
is location in page

Unpacked Records: allow gaps
between records, use a bitmap to
keep track of where the gaps are

VARIABLE-LENGTH RECORDS

Variable-length records may not have fixed & consistent field lengths

We can store variable-length records with an array of field offsets:

Each record contains a record header

Variable length fields are placed after fixed length fields

Record header stores field offset (where variable length field ends)

7

MHeader 42 1234 Jones Edinburgh

CHAR INT INT VARCHAR VARCHAR

QUESTION 1

Record header size = ???

Min record size = ???

Max record size = ???

8

CREATE TABLE Customer (
 customer_id INTEGER PRIMARY KEY,
 age INTEGER NOT NULL,
 name VARCHAR(10) NOT NULL,
 address VARCHAR(20) NOT NULL
)

Consider the following relation:

Assume record header stores only pointers (4B) to variable-length fields

QUESTION 1, PART 2

Record header size = 8

Min record size = 16

Max record size = 46

9

CREATE TABLE Customer (
 customer_id INTEGER PRIMARY KEY,
 age INTEGER NOT NULL,
 name VARCHAR(10) NOT NULL,
 address VARCHAR(20) NOT NULL
)

Consider the following relation:

Assume record header stores only pointers (4B) to variable-length fields

1234 42 Jones 10 Crichton St.

INT INT VARCHAR(10) VARCHAR(20)HEADER

SLOTTED PAGES

Most common layout scheme is called slotted pages

Slot directory maps “slots” to the
records’ starting position offsets

Record ID = (page ID, slot ID)

Header keeps track of:
The number of used slots

The offset of the last slot used

Records stored at the end of page

10

Header

Record A

Record C

Record B

Record D

Fixed/Var-length records

Slot directory

QUESTION 2

Suppose the Customer relation is stored
using a slotted page layout

Page header stores the number of records
and a pointer to free space

Directory slot stores a pointer and length

Page size is 8KB

Max number of records = ???

1111

= 3 20

Record A

Record C

Record B

39 36

1234 42 Jones 10 Crichton St.

INT INT VARCHAR(10) VARCHAR(20)HEADER

QUESTION 2, PART 2

Suppose the Customer relation is stored
using a slotted page layout

Page header stores the number of records
and a pointer to free space (4B + 4B)

Directory slot stores a pointer and length (4B + 4B)

Page size is 8KB

Max number of records

 = (page size – header size) / (min record size + slot size)

 = (8192 – 8) / (16 + 8) = 341 records

12

= 3 20

Record A

Record C

Record B

39 36

1234 42 Jones 10 Crichton St.

INT INT VARCHAR(10) VARCHAR(20)HEADER

BUFFER MANAGEMENT

13

BUFFER MANAGER

Layer that manages which pages are loaded in memory

Controls when pages are read from & written to disk

When no space in memory, decides what page to evict

Decision process is the page replacement policy

Big impact on I/Os depending on access pattern

Common policies:

LRU (Least Recently Used)

MRU (Most Recently Used)

Clock

14

Page1

HeaderDirectory

Page2

Header

Page2

HeaderDirectory

Database File

Disk

Buffer Pool

Memory

CLOCK

Efficient approximation of LRU

Arrange frames in a circle (like numbers on a clock)

Advance clock hand around the clock to find pages to evict

Only do this if you need to evict a page

To make this approximate least recently used (rather than least recently loaded):
add a reference bit to each frame

Set to 1 on load/hit, 0 if clock hand passes the frame and the frame is unpinned

Evict unpinned frame if clock hand reaches it and bit = 0

(bit = 0 means less recently used than those with bit = 1)

15

BF

CE

D

A

ref=1

ref=1

ref=1

ref=0

ref=1

ref=1

QUESTION 3

Page access sequence:

 A B C D E B A D C A E C

Assume pages are immediately unpinned
after being pinned

16

A

D

C

B

ref=0

ref=0

ref=0 ref=0

Buffer hits = ???

QUESTION 3, PART 2

Page access sequence:

 A B C D E B A D C A E C

Pages A, B, C, D populate the buffer pool

The clock hand stays still

17

A

D

C

B

ref=1

ref=1

ref=1 ref=1

Buffer hits (so far) = 0

QUESTION 3, PART 3

Page access sequence:

 A B C D E B A D C A E C

Page E not present ⇒ buffer miss!

Find first frame with ref = 0

If ref = 1, unset it and move the hand

18

Buffer hits (so far) = 0

A

D

C

B

ref=1

ref=1

ref=1 ref=1

QUESTION 3, PART 4

Page access sequence:

 A B C D E B A D C A E C

Resets bits of A, B, C, D while moving the hand

First frame with ref = 0 holds A

19

A

D

C

B

ref=0

ref=0

ref=0 ref=0

Buffer hits (so far) = 0

QUESTION 3, PART 5

Page access sequence:

 A B C D E B A D C A E C

Resets bits of A, B, C, D while moving the hand

First frame with ref = 0 holds A

Replace A with E, set reference bit, move the hand

20

E

D

C

B

ref=0

ref=1

ref=0 ref=0

Buffer hits (so far) = 0

QUESTION 3, PART 6

Page access sequence:

 A B C D E B A D C A E C

Page B is present ⇒ buffer hit!

Set refence bit

21

E

D

C

B

ref=0

ref=1

ref=0 ref=1

Buffer hits (so far) = 1

QUESTION 3, PART 7

Page access sequence:

 A B C D E B A D C A E C

Page A not present ⇒ buffer miss!

22

E

D

C

B

ref=0

ref=1

ref=0 ref=1

Buffer hits (so far) = 1

QUESTION 3, PART 8

Page access sequence:

 A B C D E B A D C A E C

Page A not present ⇒ buffer miss!

Unset refence bit for B, move the hand

23

E

D

C

B

ref=0

ref=1

ref=0 ref=0

Buffer hits (so far) = 1

QUESTION 3, PART 9

Page access sequence:

 A B C D E B A D C A E C

Page A not present ⇒ buffer miss!

Unset refence bit for B, move the hand

Replace C with A, set refence bit, move the hand

24

E

D

A

B

ref=1

ref=1

ref=0 ref=0

Buffer hits (so far) = 1

QUESTION 3, PART 10

Page access sequence:

 A B C D E B A D C A E C

Page D is present ⇒ buffer hit!

Set refence bit

25

E

D

A

B

ref=1

ref=1

ref=1 ref=0

Buffer hits (so far) = 2

QUESTION 3, PART 11

Page access sequence:

 A B C D E B A D C A E C

Page C is not present ⇒ buffer miss!

26

E

D

A

B

ref=1

ref=1

ref=1 ref=0

Buffer hits (so far) = 2

QUESTION 3, PART 12

Page access sequence:

 A B C D E B A D C A E C

Page C is not present ⇒ buffer miss!

Unset ref bits for D & E, move the hand to B

27

E

D

A

B

ref=1

ref=0

ref=0 ref=0

Buffer hits (so far) = 2

QUESTION 3, PART 13

Page access sequence:

 A B C D E B A D C A E C

Page C is not present ⇒ buffer miss!

Unset ref bits for D & E, move the hand to B

Replace B with C, set refence bit, move the hand

28

E

D

A

C

ref=1

ref=0

ref=0 ref=1

Buffer hits (so far) = 2

QUESTION 3, PART 14

Page access sequence:

 A B C D E B A D C A E C

Pages A, E, C are present ⇒ buffer hits!

29

E

D

A

C

ref=1

ref=0

ref=0 ref=1

Buffer hits (so far) = 2

QUESTION 3, PART 15

Page access sequence:

 A B C D E B A D C A E C

Pages A, E, C are present ⇒ buffer hits!

Set their reference bits

30

E

D

A

C

ref=1

ref=1

ref=0 ref=1

Buffer hits = 5

SORTING

31

SORTING

We first sort small amounts of
data into runs of sorted tuples

Given runs of sorted tuples, we
can merge them into 1 larger
run of sorted tuples

Same as in-memory merge sort

Stream in the two runs and
stream out the new run

32

3, 4 6, 2 9, 4 8, 7 5, 6 3, 1 2 ∅

2, 3
4, 6

4, 7
8, 9

1, 3
5, 6

2
∅

1, 2
3, 5

2, 3
4, 4

6
∅

6, 7
8, 9

1, 2
2, 3
3, 4
4, 5
6, 6
7, 8
9
∅

3, 4 2, 6 4, 9 7, 8 5, 6 1, 3 2 ∅
PASS

#0

PASS
#1

PASS
#2

PASS
#3

1-PAGE
RUNS

2-PAGE
RUNS

4-PAGE
RUNS

8-PAGE
RUNS

GENERAL EXTERNAL MERGE SORT

How many passes do we need?

We sort B pages at once, so we have ⌈N/B ⌉ runs after Pass 0

We merge B-1 pages at once, so we have to do ⌈logB-1 (# runs) ⌉ merge passes

So we have 1 + ⌈logB-1 ⌈N/B ⌉ ⌉ passes over the data

I/O cost:

Read and write each page per pass

Total I/O cost = 2N · (1 + ⌈logB-1 ⌈N/B ⌉ ⌉)

33

GENERAL EXTERNAL MERGE SORT

Number of passes = 1 + ⌈logB-1 ⌈N/B ⌉⌉

How many pages can be sorted in P passes?

Two passes can sort B · (B-1) pages

Three passes can sort B · (B-1)2 pages

P passes can sort B · (B-1)P-1 pages

34

QUESTION 4

Suppose the page size is 4 KB and the buffer pool size is 1 MB
B = 1024 KB / 4 KB = 256 pages

How many I/Os are required to sort a relation of size 800 KB?

N = 800 KB / 4 KB = 200 pages

The relation can completely fit into the buffer, so we only need to read it in, sort it
(no I/Os required for sorting), then write the sorted pages back to disk. Total: 400 I/Os.

What is the size of the largest relation that would need two passes to sort?
Max number of pages: B · (B – 1) = 256 · 255 = 65,280

Max relation size = 65,280 · 4 KB = 261,120 KB

35

QUESTION 4, PART 2

Suppose the page size is 4 KB and the buffer pool size is 1 MB
B = 1024 KB / 4 KB = 256 pages

How many I/Os are required to sort a relation of size 800 KB?

N = 800 KB / 4 KB = 200 pages

The relation can completely fit into the buffer, so we only need to read it in, sort it
(no I/Os required for sorting), then write the sorted pages back to disk. Total: 400 I/Os.

What is the size of the largest relation that would need two passes to sort?
Max number of pages: B · (B – 1) = 256 · 255 = 65,280

Max relation size = 65,280 · 4 KB = 261,120 KB

36

JOINS

37

NESTED LOOPS JOINS

Simple / Page / Block Nested Loop Joins:

(all pages of left table) + (number of passes of right table) * (all pages of right table)

Number of passes:

Simple: one per left row

Page: one per left page

Block: one per left block

39

NESTED LOOPS JOINS

Simple Nested Loops Join: pages(R) + tuples(R) · pages(S)

Page Nested Loops Join: pages(R) + pages(R) · pages(S)

Block Nested Loops Join: pages(R) + ⌈pages(R) / (B – 2)⌉ · pages(S)

where B is the number of available buffer pages

40

INDEX NESTED LOOPS JOIN

Index Nested Loop Join: pages(R) + tuples(R) · cost to find matching S tuples

(all pages of left table) + (number of right index lookups) · (cost of right index lookup)

Cost to find matching S tuples:

Variant A: just cost to traverse root to leaf + read all the leaves with matching tuples

Variant B/C: cost of retrieving RIDs (similar to Variant A) + cost to fetch actual tuples

1 I/O per page if clustered, 1 I/O per tuple if not

43

SORT MERGE JOIN

Sort Merge Join:

Cost to sort R using external sorting +

 Cost to sort S using external sorting +

 pages(R) + pages(S)

Note that, if a relation is already sorted, we can exclude that cost

48

SORT MERGE JOIN

Sort Merge Join optimisation: combine last sort pass with merging

Normally:

Last sort pass:

Load runs R1, R2, R3 into buffers, merge into run R, stream (write) R to disk

Load runs S1,S2, S3 into buffers, merge into run S, stream (write) S to disk

Merging:

Load run R and run S into buffers, merge into R ⋈ S

51

SORT MERGE JOIN

Sort Merge Join optimisation: combine last sort pass with merging

Sort-merge join optimisation:

Last sort pass:

Load runs R1, R2, R3 into buffers, merge into run R, stream (write) R to disk

Load runs S1,S2, S3 into buffers, merge into run S, stream (write) S to disk

Merging:

Load run R and run S into buffers, merge into R ⋈ S

Note that in this example, previously we needed only 3 input buffers, but the optimized
version needed 6 input buffers!

52

SORT MERGE JOIN

Sort Merge Join optimisation: combine last sort pass with merging

Sort-merge join optimisation:

In general, this optimization is only possible if you happen to have enough buffers to
stream BOTH last runs in memory

You can also do a partial version where you finish sorting one table normally, then do
the join with the runs of the unmerged table and the one run of the merged table

You save 2 · (pages(R) + pages(S)) by doing this optimization

The partial version saves either 2 · pages(R) or 2 · pages(S), depending on which table
you wait to merge

53

GRACE HASH JOIN

Grace Hash Join: similar to external hash, but…

Partitioning phase: Partition R into B-1 buckets and also S into B-1 buckets

Recursively partition pairs of R and S partitions until one partition in a pair fits in B-2 pages

Joining phase: for each pair of partitions where at least one is at most B-2 pages,

Load smaller side (e.g., R) into memory, and make a hash table

Stream in pages of S ⟶ match against hash table ⟶ stream out matches

Cost: Depends on the construction of the tables. It’s similar to external
hashing, but your parameters for stopping are different

56

