
Advanced Database Systems
Spring 2024

Lecture #30:

Revision II

PLAN FOR TODAY
Selectivity Estimation

Query Optimisation

2

SELECTIVITY ESTIMATION

To estimate the cost of a query, we add up the
estimated costs of each operator in the query

Need to know the size of the intermediate relations
(generated from one operator and passed into another)
in order to do this!

Need to know the selectivity of predicates - what % of
tuples are selected by a predicate

These are all estimates… if we don’t know, we
make up a value for it (e.g., selectivity = 1/10)

3

Reserves Sailors

⋈sid=sid

π sname

σ rating > 5 σ bid=100

SELECTIVITY ESTIMATION: EQUALITIES
4

PREDICATE SELECTIVITY ASSUMPTION

A = value 1 / (# distinct values of A in relation) We know |A|

A = value 1 / 10 We don’t know |A|

A = B 1 / MAX (# distinct A-values, # distinct B-values) We know |A| and |B|

A = B 1 / (# distinct values of A) We know |A| but not |B|

A = B 1 / 10 We don’t know |A| nor |B|

|column| = the number of distinct values for the column

If you have an index on column A, you can assume you know |A|, max(A), and min(A)

When using selectivity to compute # of tuples, round up the result (e.g. 245.7 → 246 tuples)

SELECTIVITY ESTIMATION: INEQUALITIES ON INTEGERS
5

PREDICATE SELECTIVITY ASSUMPTION

A < c
A ≤ c

(c – min(A)) / (max(A) – min(A) + 1)
(c – min(A) + 1) / (max(A) – min(A) + 1)

We know max(A) and min(A)
c is an integer

A < c
A ≤ c

1 / 3
We don’t know max(A) and min(A)
c is an integer

A > c
A ≥ c

(max(A) – c) / (max(A) – min(A) + 1)
(max(A) – c + 1) / (max(A) – min(A) + 1)

We know max(A) and min(A)
c is an integer

A > c
A ≥ c

1 / 3
We don’t know max(A) and min(A)
c is an integer

* We add 1 to the denominator in order for our [low, high] range to be inclusive
 E.g. range [2, 4] = 2, 3, 4 → (4 - 2) + 1 = 3

SELECTIVITY ESTIMATION: INEQUALITIES ON FLOATS
6

PREDICATE SELECTIVITY ASSUMPTION

A < c
A ≤ c

(c – min(A)) / (max(A) – min(A))
We know max(A) and min(A)
c is a float

A < c
A ≤ c

1 / 3
We don’t know max(A) and min(A)
c is a float

A > c
A ≥ c

(max(A) – c) / (max(A) – min(A))
We know max(A) and min(A)
c is a float

A > c
A ≥ c

1 / 3
We don’t know max(A) and min(A)
c is a float

* We don’t add 1 to the denominator (floats are continuous, integers are discrete)
 E.g. range [2.0, 4.0] = 2.0, 2.1, …, 3.9, 4.0 → 4.0 - 2.0 = 2.0

SELECTIVITY ESTIMATION: CONNECTIVES
7

PREDICATE SELECTIVITY ASSUMPTION

p1 AND p2 sel(p1) · sel(p2) Independent predicates

p1 OR p2 sel(p1) + sel(p2) – sel(p1) · sel(p2) Independent predicates

NOT p 1 – sel(p)

SELECTIVITY ESTIMATION

How many tuples are selected by
the following query?

 SELECT * FROM R

8

R(A,B,C) has 1000 tuples

Attribute A:
50 unique integers, uniformly
distributed in the range [1, 50]

Attribute B:
100 unique floats, uniformly
distributed in the range [1, 100]

SELECTIVITY ESTIMATION

How many tuples are selected by
the following query?

 SELECT * FROM R

 1000 tuples
 (no predicates, select all)

9

R(A,B,C) has 1000 tuples

Attribute A:
50 unique integers, uniformly
distributed in the range [1, 50]

Attribute B:
100 unique floats, uniformly
distributed in the range [1, 100]

SELECTIVITY ESTIMATION

How many tuples are selected by
the following query?

 SELECT * FROM R
 WHERE A = 42

10

R(A,B,C) has 1000 tuples

Attribute A:
50 unique integers, uniformly
distributed in the range [1, 50]

Attribute B:
100 unique floats, uniformly
distributed in the range [1, 100]

SELECTIVITY ESTIMATION

How many tuples are selected by
the following query?

 SELECT * FROM R
 WHERE A = 42

 50 unique values in A
 1/50 · (1000 tuples) = 20 tuples

11

R(A,B,C) has 1000 tuples

Attribute A:
50 unique integers, uniformly
distributed in the range [1, 50]

Attribute B:
100 unique floats, uniformly
distributed in the range [1, 100]

SELECTIVITY ESTIMATION

How many tuples are selected by
the following query?

 SELECT * FROM R
 WHERE C = 42

12

R(A,B,C) has 1000 tuples

Attribute A:
50 unique integers, uniformly
distributed in the range [1, 50]

Attribute B:
100 unique floats, uniformly
distributed in the range [1, 100]

SELECTIVITY ESTIMATION

How many tuples are selected by
the following query?

 SELECT * FROM R
 WHERE C = 42

 No information about C
 1/10 · (1000 tuples) = 100 tuples

13

R(A,B,C) has 1000 tuples

Attribute A:
50 unique integers, uniformly
distributed in the range [1, 50]

Attribute B:
100 unique floats, uniformly
distributed in the range [1, 100]

SELECTIVITY ESTIMATION

How many tuples are selected by
the following query?

 SELECT * FROM R
 WHERE A <= 25

14

R(A,B,C) has 1000 tuples

Attribute A:
50 unique integers, uniformly
distributed in the range [1, 50]

Attribute B:
100 unique floats, uniformly
distributed in the range [1, 100]

SELECTIVITY ESTIMATION

How many tuples are selected by
the following query?

 SELECT * FROM R
 WHERE A <= 25

 sel(A <= 25) =
 = (25 – 1 + 1) / (50 – 1 + 1)
 = 1/2

 1/2 · (1000 tuples) = 500 tuples

15

R(A,B,C) has 1000 tuples

Attribute A:
50 unique integers, uniformly
distributed in the range [1, 50]

Attribute B:
100 unique floats, uniformly
distributed in the range [1, 100]

SELECTIVITY ESTIMATION

How many tuples are selected by
the following query?

 SELECT * FROM R
 WHERE B <= 25

16

R(A,B,C) has 1000 tuples

Attribute A:
50 unique integers, uniformly
distributed in the range [1, 50]

Attribute B:
100 unique floats, uniformly
distributed in the range [1, 100]

SELECTIVITY ESTIMATION

How many tuples are selected by
the following query?

 SELECT * FROM R
 WHERE B <= 25

 sel(B <= 25) =
 = (25 – 1) / (100 – 1)
 = 24/99 = 0.2424…

 round(0.2424… · (1000 tuples)) = 242 tuples

17

R(A,B,C) has 1000 tuples

Attribute A:
50 unique integers, uniformly
distributed in the range [1, 50]

Attribute B:
100 unique floats, uniformly
distributed in the range [1, 100]

SELECTIVITY ESTIMATION

How many tuples are selected by
the following query?

 SELECT * FROM R
 WHERE C <= 25

18

R(A,B,C) has 1000 tuples

Attribute A:
50 unique integers, uniformly
distributed in the range [1, 50]

Attribute B:
100 unique floats, uniformly
distributed in the range [1, 100]

SELECTIVITY ESTIMATION

How many tuples are selected by
the following query?

 SELECT * FROM R
 WHERE C <= 25

 No information about C
 round(1/3 · (1000 tuples)) = 333 tuples

19

R(A,B,C) has 1000 tuples

Attribute A:
50 unique integers, uniformly
distributed in the range [1, 50]

Attribute B:
100 unique floats, uniformly
distributed in the range [1, 100]

SELECTIVITY ESTIMATION

How many tuples are selected by
the following query?

 SELECT * FROM R
 WHERE A <= 25
 AND B <= 25

20

R(A,B,C) has 1000 tuples

Attribute A:
50 unique integers, uniformly
distributed in the range [1, 50]

Attribute B:
100 unique floats, uniformly
distributed in the range [1, 100]

SELECTIVITY ESTIMATION

How many tuples are selected by
the following query?

 SELECT * FROM R
 WHERE A <= 25
 AND B <= 25

 sel(A <= 25) · sel(B <= 25)
 = 1/2 · 24/99 = 12/99
 = 0.1212…
 round(0.1212… · (1000 tuples)) = 121 tuples

21

R(A,B,C) has 1000 tuples

Attribute A:
50 unique integers, uniformly
distributed in the range [1, 50]

Attribute B:
100 unique floats, uniformly
distributed in the range [1, 100]

SELECTIVITY ESTIMATION

How many tuples are selected by
the following query?

 SELECT * FROM R
 WHERE A <= 25
 OR B <= 25

22

R(A,B,C) has 1000 tuples

Attribute A:
50 unique integers, uniformly
distributed in the range [1, 50]

Attribute B:
100 unique floats, uniformly
distributed in the range [1, 100]

SELECTIVITY ESTIMATION

How many tuples are selected by
the following query?

 SELECT * FROM R
 WHERE A <= 25
 OR B <= 25

 sel(A <= 25) + sel(B <= 25)
 – sel(A <= 25) · sel(B <= 25)
 = 1/2 + 24/99 – 1/2 · 24/99 = 0.62121…

 round(0.62121… · (1000 tuples)) = 621 tuples

23

R(A,B,C) has 1000 tuples

Attribute A:
50 unique integers, uniformly
distributed in the range [1, 50]

Attribute B:
100 unique floats, uniformly
distributed in the range [1, 100]

SELECTIVITY ESTIMATION

How many tuples are selected by
the following query?

 SELECT * FROM R
 WHERE A = C

24

R(A,B,C) has 1000 tuples

Attribute A:
50 unique integers, uniformly
distributed in the range [1, 50]

Attribute B:
100 unique floats, uniformly
distributed in the range [1, 100]

SELECTIVITY ESTIMATION

How many tuples are selected by
the following query?

 SELECT * FROM R
 WHERE A = C

 No information about C
 1/50 · (1000 tuples) = 20 tuples

25

R(A,B,C) has 1000 tuples

Attribute A:
50 unique integers, uniformly
distributed in the range [1, 50]

Attribute B:
100 unique floats, uniformly
distributed in the range [1, 100]

SELECTIVITY ESTIMATION

How many tuples are selected by
the following query?

 SELECT * FROM R, S
 WHERE R.A = S.D

26

R(A,B,C) has 1000 tuples

S(D, E) has 500 tuples

Attribute R.A:
50 unique integers, uniformly
distributed in the range [1, 50]

Attribute S.D:
25 unique integers, uniformly
distributed in the range [1, 25]

SELECTIVITY ESTIMATION

How many tuples are selected by
the following query?

 SELECT * FROM R, S
 WHERE R.A = S.D

 Max output size = |R| · |S|

 sel(R.A = S.D)
 = 1 / MAX(50, 25) = 1/50
 1/50 · (1000 · 500) = 10,000 tuples

27

R(A,B,C) has 1000 tuples

S(D, E) has 500 tuples

Attribute R.A:
50 unique integers, uniformly
distributed in the range [1, 50]

Attribute S.D:
25 unique integers, uniformly
distributed in the range [1, 25]

QUERY OPTIMISATION

28

QUERY OPTIMISATION – BACKGROUND

We can represent relational algebra expressions as trees

Order of operators affects I/Os and resource
usage, but not necessarily output

π sname(σ bid=100 ∧ rating > 5 (Reserves	⋈ Sailors))

29

Reserves Sailors

⋈sid=sid

π sname

σ bid=100 ∧ rating > 5

QUERY OPTIMISATION – ALTERNATE PLANS

Given a plan, some things we can do are:

Push selections/projections down the tree

The earlier we reduce the size of input, the fewer I/Os are incurred as we traverse up the tree

Reduces I/O cost if materialized

30

Reserves Sailors

⋈sid=sid

π sname

σ rating > 5 σ bid=100

Reserves Sailors

⋈sid=sid

π sname

σ bid=100 ∧ rating > 5

QUERY OPTIMISATION – ALTERNATE PLANS

Given a plan, some things we can do are:

Push selections/projections down the tree

Materialize intermediate relations (write to a temp file)

Results in additional write I/Os, but is better in the long run

Use indices (e.g., INLJ)

31

QUERY OPTIMISATION - MATERIALISING

Table R consists of 50 pages
Table S consists of 100 pages
sel(S.age < 25) = 0.5

Without materializing, we are performing σage < 25

on the fly each time in PNLJ, and scanning the
entire table S for each page of R

Cost = Scan R (50) + PNLJ (50 · 100) = 5,050 I/Os

32

R

S

⋈

SCAN

σage < 25
SCAN

PAGE NESTED LOOPS

QUERY OPTIMISATION - MATERIALISING

Table R consists of 50 pages
Table S consists of 100 pages
sel(S.age < 25) = 0.5

By materializing the intermediate relation, we are

applying σage < 25 before PNLJ, and performing

the join on the result of the selection

Cost = Scan R (50) + Scan S (100) +
 Materialise (50) + PNLJ (50 · 50) = 2,700 I/Os

33

R

S

⋈

SCAN

σ age < 25SCAN

PAGE NESTED LOOPS

Materialisation

QUERY OPTIMISATION

A query optimiser takes in a query plan (e.g., one directly translated
from a SQL query) and outputs a better (hopefully optimal) query plan

Works on and optimizes over a plan space (set of all plans considered)

Performs cost estimation on query plans

Uses a search algorithm to search through plan space to find plan with
lowest cost estimate

May not be optimal (bad estimate or small plan space considered)

34

QUERY OPTIMISATION – SYSTEM R

We will be looking at the System R optimiser (aka Selinger optimiser)

Plan space

Only left-deep trees, avoid Cartesian products unless they are the only option

Left-deep trees represent a plan where all new tables are joined one at a time from the right

Cost estimation

Actual System R optimiser incorporates both CPU and I/O cost

We will only use I/O cost in this course

Search algorithm

Dynamic programming

35

QUERY OPTIMISATION – SYSTEM R

Only consider left-deep plans

36

⋈
S R

U
⋈T

⋈

left-deep
((R ⋈ S) ⋈ T) ⋈ U

right-deep
T ⋈ (U ⋈ (S ⋈ R))

bushy
(R ⋈ S) ⋈ (T ⋈ U)

⋈
SR U

⋈
T

⋈⨉
⋈
R S

T
⋈ U
⋈✓ ⨉

QUERY OPTIMISATION – SYSTEM R

Why only left-deep trees?

Join new tables one at a time from the right

Create an ordering in which to add tables to the query being executed

Too many possible trees for joins

Using only left-deep trees: N! different ways to order relations

Including all permutations tree layouts: A very large number
of ways to parenthesize given an ordering (superexponential in N)

37

of relations n # of different join trees

2 2

3 12

4 120

5 1,680

6 30,240

7 665,280

8 17,297,280

10 17,643,225,600

QUERY OPTIMISATION – SYSTEM R
38

Search algorithm for System R: use dynamic programming

Based on the principle of optimality

Runtime drops from n! to around n·2n

To be considered, must be:

Left deep

No Cartesian products

 (I.e. if we join R and S on <cond1> and we join S and T on <cond2>,
 we don’t consider joining R and T if there’s no condition between them)

QUERY OPTIMISATION – SYSTEM R
39

For N relations joined, perform N passes

On the i-th pass, output only the best plan for joining any i of the N relations

Also keep around plans that have higher cost but have an interesting order

Interesting orders are orderings on intermediate relations that may
help reduce the cost of later operators (e.g., joins, sorting, hashing)

ORDER BY attributes

GROUP BY attributes

downstream join attributes

SYSTEM R OPTIMISATION: EXAMPLE
40

Pass 1:
Find minimum cost access method for each (relation, interesting order) pair

Index scan, full table scans

A toy example:

SELECT * FROM R, S, T
 WHERE R.B = S.B
 AND S.C = T.C
 AND R.A <= 50

SYSTEM R OPTIMISATION: EXAMPLE
41

Pass 1:
Assume the single table access plans have the following IO costs:

SELECT * FROM R, S, T
 WHERE R.B = S.B
 AND S.C = T.C
 AND R.A <= 50

Full scan on R 1000 I/Os

Index scan on R.A 200 I/Os (sorted on R.A)
Index scan on R.B 1100 I/Os (sorted on R.B)

Full scan on S 2000 I/Os

Index scan on S.B 2500 I/Os (sorted on S.B)

Full scan on T 3000 I/Os
Index scan on T.C 3500 I/Os (sorted on T.C)

Index scan on T.D 3500 I/Os (sorted on T.D)

SYSTEM R OPTIMISATION: EXAMPLE
42

Pass 1:
Which single table access plans advance to the next stage?

SELECT * FROM R, S, T
 WHERE R.B = S.B
 AND S.C = T.C
 AND R.A <= 50

Full scan on R 1000 I/Os

Index scan on R.A 200 I/Os (sorted on R.A)
Index scan on R.B 1100 I/Os (sorted on R.B)

Full scan on S 2000 I/Os

Index scan on S.B 2500 I/Os (sorted on S.B)

Full scan on T 3000 I/Os
Index scan on T.C 3500 I/Os (sorted on T.C)

Index scan on T.D 3500 I/Os (sorted on T.D)

SYSTEM R OPTIMISATION: EXAMPLE
43

Pass 1:
Which single table access plans advance to the next stage?

SELECT * FROM R, S, T
 WHERE R.B = S.B
 AND S.C = T.C
 AND R.A <= 50

Full scan on R 1000 I/Os

Index scan on R.A 200 I/Os (sorted on R.A)
Index scan on R.B 1100 I/Os (sorted on R.B)

Full scan on S 2000 I/Os

Index scan on S.B 2500 I/Os (sorted on S.B)

Full scan on T 3000 I/Os
Index scan on T.C 3500 I/Os (sorted on T.C)

Index scan on T.D 3500 I/Os (sorted on T.D)

SYSTEM R OPTIMISATION: EXAMPLE
44

Pass 1:
Which single table access plans advance to the next stage?

Index scan on R.A (best overall plan for R)

Index scan on R.B (output sorted on R.B and R.B is used in a join)

Full scan on S (best overall plan for S)

Index scan on S.B (output sorted on S.B and S.B is used in a join)

Full scan on T (best overall plan for T)

Index scan on T.C (output sorted on T.C and T.C is used in a join)

SYSTEM R OPTIMISATION: EXAMPLE

Assume the following join costs:

45

R ⋈BNLJ S 21,000 I/Os

R ⋈SMJ S 3,600 I/Os
S ⋈BNLJ R 18,000 I/Os

S ⋈SMJ R 3,000 I/Os

R ⋈BNLJ T 30,000 I/Os

R ⋈SMJ T 40,000 I/Os
T ⋈BNLJ R 35,000 I/Os

T ⋈SMJ R 20,000 I/Os

S ⋈BNLJ T 15,000 I/Os

S ⋈SMJ T 10,000 I/Os
T ⋈BNLJ S 25,000 I/Os

T ⋈SMJ S 30,000 I/Os

SELECT * FROM R, S, T
 WHERE R.B = S.B
 AND S.C = T.C
 AND R.A <= 50

Which of these joins will actually be considered by
the query optimiser on pass 2?

SYSTEM R OPTIMISATION: EXAMPLE

Assume the following join costs:

46

R ⋈BNLJ S 21,000 I/Os

R ⋈SMJ S 3,600 I/Os
S ⋈BNLJ R 18,000 I/Os

S ⋈SMJ R 3,000 I/Os

R ⋈BNLJ T 30,000 I/Os

R ⋈SMJ T 40,000 I/Os
T ⋈BNLJ R 35,000 I/Os

T ⋈SMJ R 20,000 I/Os

S ⋈BNLJ T 15,000 I/Os

S ⋈SMJ T 10,000 I/Os
T ⋈BNLJ S 25,000 I/Os

T ⋈SMJ S 30,000 I/Os

SELECT * FROM R, S, T
 WHERE R.B = S.B
 AND S.C = T.C
 AND R.A <= 50

Which of these joins will actually be considered by
the query optimiser on Pass 2?
Eliminate Cartesian products (joins between R and T)

SYSTEM R OPTIMISATION: EXAMPLE

Assume the following join costs:

47

R ⋈BNLJ S 21,000 I/Os

R ⋈SMJ S 3,600 I/Os
S ⋈BNLJ R 18,000 I/Os

S ⋈SMJ R 3,000 I/Os

R ⋈BNLJ T 30,000 I/Os

R ⋈SMJ T 40,000 I/Os
T ⋈BNLJ R 35,000 I/Os

T ⋈SMJ R 20,000 I/Os

S ⋈BNLJ T 15,000 I/Os

S ⋈SMJ T 10,000 I/Os
T ⋈BNLJ S 25,000 I/Os

T ⋈SMJ S 30,000 I/Os

SELECT * FROM R, S, T
 WHERE R.B = S.B
 AND S.C = T.C
 AND R.A <= 50

Which of these joins will advance to the next pass of
the query optimiser?

SYSTEM R OPTIMISATION: EXAMPLE

Assume the following join costs:

48

R ⋈BNLJ S 21,000 I/Os

R ⋈SMJ S 3,600 I/Os
S ⋈BNLJ R 18,000 I/Os

S ⋈SMJ R 3,000 I/Os

R ⋈BNLJ T 30,000 I/Os

R ⋈SMJ T 40,000 I/Os
T ⋈BNLJ R 35,000 I/Os

T ⋈SMJ R 20,000 I/Os

S ⋈BNLJ T 15,000 I/Os

S ⋈SMJ T 10,000 I/Os
T ⋈BNLJ S 25,000 I/Os

T ⋈SMJ S 30,000 I/Os

SELECT * FROM R, S, T
 WHERE R.B = S.B
 AND S.C = T.C
 AND R.A <= 50

Which of these joins will advance to the next pass of
the query optimiser?
None of the joins produce an interesting order (no
downstream joins, ORDER BY, GROUP BY). Only
consider best join for each considered set of tables

SYSTEM R OPTIMISATION: EXAMPLE

Assume the following join costs:

49

R ⋈BNLJ S 21,000 I/Os

R ⋈SMJ S 3,600 I/Os
S ⋈BNLJ R 18,000 I/Os

S ⋈SMJ R 3,000 I/Os

R ⋈BNLJ T 30,000 I/Os

R ⋈SMJ T 40,000 I/Os
T ⋈BNLJ R 35,000 I/Os

T ⋈SMJ R 20,000 I/Os

S ⋈BNLJ T 15,000 I/Os

S ⋈SMJ T 10,000 I/Os
T ⋈BNLJ S 25,000 I/Os

T ⋈SMJ S 30,000 I/Os

SELECT * FROM R, S, T
 WHERE R.B = S.B
 AND S.C = T.C
 AND R.A <= 50

Will any of these remaining joins produce an
interesting order?

SYSTEM R OPTIMISATION: EXAMPLE

Assume the following join costs:

50

R ⋈BNLJ S 21,000 I/Os

R ⋈SMJ S 3,600 I/Os
S ⋈BNLJ R 18,000 I/Os

S ⋈SMJ R 3,000 I/Os

R ⋈BNLJ T 30,000 I/Os

R ⋈SMJ T 40,000 I/Os
T ⋈BNLJ R 35,000 I/Os

T ⋈SMJ R 20,000 I/Os

S ⋈BNLJ T 15,000 I/Os

S ⋈SMJ T 10,000 I/Os
T ⋈BNLJ S 25,000 I/Os

T ⋈SMJ S 30,000 I/Os

SELECT * FROM R, S, T
 WHERE R.B = S.B
 AND S.C = T.C
 AND R.A <= 50

Will any of these remaining joins produce an
interesting order?
No. R ⋈SMJ S is sorted on B (not interesting), and
T ⋈SMJ S is sorted on C (not interesting)

SYSTEM R OPTIMISATION: EXAMPLE

How could we modify the query so that S ⋈SMJ R yields an interesting order?

51

SYSTEM R OPTIMISATION: EXAMPLE

How could we modify the query so that S ⋈SMJ R yields an interesting order?

S ⋈SMJ R will be sorted on column B, so we need B to be interesting. We could
add ORDER BY B, GROUP BY B, or another join condition involving R.B or S.B
to the query to make it interesting

52

SYSTEM R OPTIMISATION: EXAMPLE

Will the query plan T ⋈BNLJ (S ⋈SMJ R) be considered by the final pass of the
query optimiser?

53

SYSTEM R OPTIMISATION: EXAMPLE

Will the query plan T ⋈BNLJ (S ⋈SMJ R) be considered by the final pass of the
query optimiser?

No, this query plan is not left-deep (all join results must be on the left side of
their parent join), so it is not considered in the final pass

54

COMMIT

END TRANSACTION

55

