
Advanced Database Systems
Spring 2025

Lecture #02:

SQL

R&G: Chapter 5

SQL HISTORY

Developed @ IBM Research in the 1970s

System R project

Originally “SEQUEL”: Structured English Query Language

Commercialised/popularised in the 1980s

Adopted by Oracle in the late 1970s

IBM released DB2 in 1983

ANSI standard in 1986. ISO in 1987

Structured Query Language

Current standard is SQL:2023

2

SQL’S PERSISTENCE

50 years old!

Questioned repeatedly

90’s: Object-Oriented DBMS (OQL, etc.)

2000’s: XML (Xquery, Xpath, XSLT)

2010’s: NoSQL & MapReduce

SQL keeps re-emerging as the standard

Even Hadoop, Spark etc. mostly used via SQL

May not be perfect, but it is useful

4

SQL PROS AND CONS

Declarative!

Say what you want, not how to get it

Implemented widely

With varying levels of efficiency, completeness

Most DBMSs support at least SQL-92

Constrained

Not targeted at Turing-complete tasks

Feature-rich

Many years of added features

Extensible: callouts to other languages, data sources

5

OUTLINE

Relational Terminology

Single-table Queries

Aggregations + Group By

Joins

Nested Queries

6

RELATIONAL TERMINOLOGY

Database: Set of named relations

Relation (Table):

Schema: description (“metadata”)

Instance: collection of data satisfying the schema

7

sid name dept

12344 Jones CS

12355 Smith Physics

12366 Gold CS

Student(sid: int, name: text, dept: text)

Tuple (record, row)

Attribute (field, column)

RELATIONAL TABLES

Schema is fixed

Unique attribute names, attribute types are atomic

Instances can change often

In SQL, an instance is a multiset (bag) of tuples

8

name dept age

Jones CS 18

Smith Physics 21

Jones CS 18

Student(sid: int, name: text, dept: text)

SQL LANGUAGE

Three sublanguages

RDBMS responsible for efficient evaluation

Choose and run algorithms for declarative queries

Choice of algorithm must not affect query answer

9

DDL Data Definition Language Define and modify schema

DML Data Manipulation Language Write queries intuitively

DCL Data Control Language Control access to data

EXAMPLE DATABASE

10

sid name dept age

12344 Jones CS 18

12355 Smith Physics 23

12366 Gold CS 21

Student(sid, name, dept, age)

cid name year

INF-11199 Advanced Database Systems 2020

INF-10080 Introduction to Databases 2020

INF-11122 Foundations of Databases 2019

INF-11007 Data Mining and Exploration 2019

Course(cid,name, year)

sid cid grade

12344 INF-10080 65

12355 INF-11199 72

12355 INF-11122 61

12366 INF-10080 80

12344 INF-11199 53

Enrolled(sid, cid, grade)

BASIC SINGLE-TABLE QUERIES

Simplest version is straightforward

Produce all tuples in the table that match the predicate

Output the expressions in the SELECT list

Expression can be a column reference, or

an arithmetic expression over column refs

DISTINCT removes duplicate rows before output

11

SELECT [DISTINCT] <column expression list>
 FROM <single table>
[WHERE <predicate>]

SELECT cid
 FROM Enrolled
 WHERE grade > 95

SELECT *
 FROM Student
 WHERE age = 18

Get all 18-year-old students

Get IDs of courses with grades > 95

SELECT DISTINCT cid
 FROM Enrolled
 WHERE grade > 95

ORDER BY

Sort the output tuples by the values in one or more of their columns

Ascending order by default, but can be overridden

Can mix and match, lexicographically

12

SELECT sid, grade FROM Enrolled
 WHERE cid = ‘INF-11199’
 ORDER BY grade

sid grade

12344 53

12399 72

12355 72

12311 76

ORDER BY <column*> [ASC|DESC]

SELECT sid, grade FROM Enrolled
 WHERE cid = ‘INF-11199’
 ORDER BY grade DESC, sid ASC

sid grade

12311 76

12355 72

12399 72

12344 53

LIMIT

Limit the # of tuples returned in the output

Typically used with ORDER BY

Otherwise the output is non-deterministic, depends on the algo for query processing

Can set an offset to skip first records

13

LIMIT <count> [offset]

SELECT sid, grade FROM Enrolled
 WHERE cid = ‘INF-11199’
 ORDER BY grade LIMIT 3

sid grade

12344 53

12399 72

12355 72

SELECT sid, grade FROM Enrolled
 WHERE cid = ‘INF-11199’
 ORDER BY grade LIMIT 3 OFFSET 1

sid grade

12399 72

12355 72

12311 76

AGGREGATES

Functions that return a summary (aggregate) of some arithmetic

expression from a bag of tuples

Aggregate functions can only be used in the SELECT list

Other aggregates: SUM, COUNT, MIN, MAX

14

SELECT AVG(age) AS avg_age
 FROM Student WHERE dept = ‘CS’

Get the average age of CS students

SELECT AVG(age) AS avg_age,
 COUNT(sid) AS cnt
 FROM Student WHERE dept = ‘CS’

Get the average age and # of CS students

avg_age cnt

20.5 153

avg_age

20.5

GROUP BY

Partition table into groups with the same GROUP BY column values

Can group by a list of columns

Produce an aggregate result per group

Cardinality of output = # of distinct group values

Can put grouping columns in the SELECT output list

15

SELECT dept, AVG(age) AS avg_age
 FROM Student
 GROUP BY dept

Get the average age per department
dept avg_age

CS 20.5

Physics 21.1

Maths 19.8

GROUP BY

Non-aggregated values in SELECT output clause must

appear in GROUP BY clause

16

SELECT dept, name, AVG(age)
 FROM Student
 GROUP BY dept

SELECT dept, name, AVG(age)
 FROM Student
 GROUP BY dept, name

FILTER GROUPS

17

SELECT dept, AVG(age) AS avg_age
 FROM Student
 WHERE avg_age > 21
 GROUP BY dept

Get departments with average student age above 21

dept avg_age

Physics 21.1

SELECT dept, AVG(age) AS avg_age
 FROM Student
 GROUP BY dept

Get the average age per department
dept avg_age

CS 20.5

Physics 21.1

Maths 19.8

HAVING

HAVING filters results after grouping and aggregation

Hence can contain anything that could go in the SELECT list

I.e., GROUP BY columns or aggregates (e.g., COUNT(*) > 5)

HAVING can only be used in aggregate queries

It’s an optional clause

18

SELECT dept, AVG(age) AS avg_age
 FROM Student
 GROUP BY dept
HAVING AVG(age) > 21

Get departments with average student age above 21

CONCEPTUAL SQL EVALUATION

19

SELECT [DISTINCT] <column expression list>
 FROM <single table>
[WHERE <predicate>]
[GROUP BY <column list> [HAVING <predicate>]]
[ORDER BY <column list>] [LIMIT <count>]

GROUP BY
form groups & aggs

WHERE
apply selection

FROM
Identify relation

HAVING
eliminate groups

DISTINCT
eliminate duplicates

SELECT
project away columns

ORDER BY
sort output

LIMIT
limit # of output tuples

Does not imply the query will actually be evaluated this way!

MULTIPLE-TABLE QUERIES

20

SELECT [DISTINCT] <column expression list>
 FROM <table1 [AS t1], ..., tableN [AS tn]>
[WHERE <predicate>]
[GROUP BY <column list> [HAVING <predicate>]]
[ORDER BY <column list>] [LIMIT <count>]

GROUP BY
form groups & aggs

WHERE
apply selection

FROM
table cross product

HAVING
eliminate groups

DISTINCT
eliminate duplicates

SELECT
project away columns

ORDER BY
sort output

LIMIT
limit # of output tuples

This evaluation strategy is almost always inefficient!

JOIN QUERY

21

SELECT S.name, E.grade
 FROM Student AS S, Enrolled AS E
 WHERE S.sid = E.sid
 AND E.cid = ‘INF-11199’

Get the names and grades of students in INF-11199

sid name dept age

12344 Jones CS 18

12355 Smith Physics 23

12366 Gold CS 21

Student(sid, name, dept, age)

sid cid grade

12344 INF-10080 65

12355 INF-11199 72

12355 INF-11122 61

12366 INF-10080 80

12344 INF-11199 53

Enrolled(sid, cid, grade)

name grade

Smith 72

Jones 53

Declarative computation

Let the DBMS figure out how to compute this query

Possible options:

1) Cross product → filter on sid & cid → projection

2) Filter on cid → cross product → filter on sid → projection

3) Something else?

JOIN QUERY – ANOTHER SYNTAX

22

SELECT S.name, E.grade
 FROM Student AS S, Enrolled AS E
 WHERE S.sid = E.sid
 AND E.cid = ‘INF-11199’

Get the names and grades of students in INF-11199

SELECT S.name, E.grade
 FROM Student S INNER JOIN Enrolled E
 ON S.sid = E.sid
 WHERE E.cid = ‘INF-11199’

SELECT S.name, E.grade
 FROM Student S NATURAL JOIN Enrolled E
 WHERE E.cid = ‘INF-11199’

Inner join what we’ve learned so far

INNER is optional here

All 3 queries are equivalent

NATURAL means equi-join for pairs of

attributes with the same name

JOIN VARIANTS

The different types of outer joins determine what we do with rows

that don’t match the join condition

23

SELECT <column list>

 FROM <table>

 [INNER | NATURAL | { LEFT | RIGHT | FULL } OUTER] JOIN

 ON <qualification list>

 WHERE ...

LEFT OUTER JOIN

24

Student

sid cid grade

121 INF-10080 65

123 INF-11199 72

121 INF-11122 61

201 INF-11199 53

Enrolled

sid name dept age

121 Jones CS 18

122 Smith Physics 19

123 Gold CS 21

SELECT S.name, E.grade
 FROM Student S LEFT OUTER JOIN Enrolled E
 ON S.sid = E.sid

Return all matched rows &

 preserve all unmatched

rows from the table on the

left of the join clause

Use NULLs in fields of

non-matching tuples

name grade

Jones 65

Jones 61

Gold 72

Smith NULL

RIGHT OUTER JOIN

25

Student

sid cid grade

121 INF-10080 65

123 INF-11199 72

121 INF-11122 61

201 INF-11199 53

Enrolled

sid name dept age

121 Jones CS 18

122 Smith Physics 19

123 Gold CS 21

SELECT S.name, E.grade
 FROM Student S RIGHT OUTER JOIN Enrolled E
 ON S.sid = E.sid

Return all matched rows &

 preserve all unmatched

rows from the table on the

right of the join clause

name grade

Jones 65

Jones 61

Gold 72

NULL 53

FULL OUTER JOIN

26

Student

sid cid grade

121 INF-10080 65

123 INF-11199 72

121 INF-11122 61

201 INF-11199 53

Enrolled

sid name dept age

121 Jones CS 18

122 Smith Physics 19

123 Gold CS 21

SELECT S.name, E.grade
 FROM Student S FULL OUTER JOIN Enrolled E
 ON S.sid = E.sid

Return all matched &

unmatched rows from

the tables on both

sides of the join clause

name grade

Jones 65

Jones 61

Gold 72

Smith NULL

NULL 53

NESTED QUERIES

Queries containing other queries

They are often difficult to optimise

Inner queries can appear (almost) anywhere in query

27

SELECT S.name FROM Student S
 WHERE S.sid IN
 (SELECT E.sid FROM Enrolled E) Inner Query

Outer Query

Get the names of students enrolled in any course

NESTED QUERIES

This is a bit odd, but it is equivalent:

28

Get the names of students in INF-11199

“S.sid in the set of students that

take INF-11199”

SELECT S.name FROM Student S
 WHERE ...
SELECT S.name FROM Student S
 WHERE S.sid IN (
 SELECT E.sid FROM Enrolled E
 WHERE E.cid = ‘INF-11199’
)

SELECT S.name FROM Student S
 WHERE EXISTS (
 SELECT E.sid FROM Enrolled E
 WHERE E.cid = ‘INF-11199’
 AND S.sid = E.sid)

Nested query with correlation on sid

Correlated subquery is recomputed for

each Student tuple

MORE ON SET-COMPARISON OPERATORS

Seen so far: IN, EXISTS

Can also have: NOT IN, NOT EXISTS, op ALL, op ANY

where op is a standard comparison operator (=, <>, !=, >, >=, <, <=)

ALL → Must satisfy expression for all rows in subquery

ANY → Must satisfy expression for at least one row in subquery

IN → Equivalent to ‘= ANY()’

NOT IN → Equivalent to ‘!= ALL()’

EXISTS → At least one row is returned

29

Get the names of students in INF-11199

SELECT S.name FROM Student S
 WHERE S.sid = ANY (
 SELECT E.sid FROM Enrolled E
 WHERE E.cid = ‘INF-11199’
)

SUMMARY

This was a crash course on SQL

Many aspects not covered though, only essential

SQL is a declarative language

Somebody must translate SQL to algorithms... but how?

The data structures and algorithms that make SQL possible also power:

NoSQL, data mining, scalable ML analytics,…

A toolbox for scalable computing!

That fun begins next week

30

	Slide 1
	Slide 2: SQL History
	Slide 4: SQL’s Persistence
	Slide 5: SQL Pros and Cons
	Slide 6: Outline
	Slide 7: Relational Terminology
	Slide 8: Relational Tables
	Slide 9: SQL Language
	Slide 10: Example Database
	Slide 11: Basic Single-Table Queries
	Slide 12: Order By
	Slide 13: Limit
	Slide 14: Aggregates
	Slide 15: Group By
	Slide 16: Group By
	Slide 17: Filter Groups
	Slide 18: Having
	Slide 19: Conceptual SQL Evaluation
	Slide 20: Multiple-Table Queries
	Slide 21: Join Query
	Slide 22: Join Query – Another Syntax
	Slide 23: Join Variants
	Slide 24: Left Outer Join
	Slide 25: Right Outer Join
	Slide 26: Full Outer Join
	Slide 27: Nested Queries
	Slide 28: Nested Queries
	Slide 29: More on Set-Comparison Operators
	Slide 30: Summary

