

Advanced Database Systems

Spring 2025

Lecture #03: **Relational Algebra**

R&G: Chapters 4.1 & 4.2

QUERY EXECUTION OVERVIEW SQL Query **Relational Algebra** SELECT S.name $\pi_{\text{S.name}}(\sigma_{\text{E.cid}='\text{INF-11199'}})$ FROM Student S. Enrolled E Student ⋈_{S.sid=E.sid} Enrolled)) WHERE S.sid = E.sid Query Parser & AND E.cid = 'INF-11199' Optimiser Equivalent to... **Optimised Physical Query Plan** Logical Query Plan $\pi_{\text{S.name}}^{\text{sorting}}$ $\pi_{\text{S.name}}$ sort-merge join σ E.cid='INF-11199' S.sid = E.sid But actually will O B+ tree S.sid = E.sid produce plan with

operator code

Student

Enrolled

E.cid='INF-11199'

Enrolled

2

scan

Student

1

Edgar F. "Ted" Codd (1923 - 2003) Turing Award 1981

RELATIONAL ALGEBRA

Algebra of operators on relation instances

 $\pi_{\text{S.name}}(\sigma_{\text{E.cid='INF-11199'}}(S \Join_{\text{S.sid=E.sid}} E))$

Closed: result is also a relation instance Enables rich composition!

Typed: input schema determines output schema Can statically check whether queries are legal σ Selection

 π Projection

- **ρ** Renaming
- U Union
- Set DifferenceCross Product
- ∩ Intersection
- ▶ Join

6

RELATIONAL ALGEBRA AND SETS

Pure relational algebra has set semantics

No duplicate tuples in a relation instance

But can also be defined over bags (multisets)

SQL has multiset (bag) semantics

We will switch to multiset in the system discussion

SELECTION

Syntax: opredicate (R)

Select a subset of rows (horizontal) that satisfy a selection predicate

Can combine predicates using conjunctions / disjunctions

Output schema same as input

Duplicate elimination? Not needed

$\sigma_{aid='a2' \Lambda bid > 102}$ (R)

aid	bid	a2
a2	103	a2

	,
aid	bid
a1	101
a2	102
a2	103
a3	104

R(aid, bid)

σ _{aid=}	σ _{aid='a2'} (R)			
aid	bid			
a2	102			
a2	103			

		10
Syntax: R u S	R(aid, bid)	S(aid, bid)
Two input relations must be compatible Same number of fields Fields in corresponding positions have same type	aidbida1101a2102a3103	aid bid a3 103 a4 104 a5 105
Duplicate elimination in practice (SQL)? UNION – eliminates duplicates UNION ALL – keeps duplicates	R U S aid bid a1 101 a2 102 a3 103 a4 104 a5 105	

CROSS PRODUCT							12
Syntax: R × S		R(a ai	<mark>id, bi</mark> d d bid 101	d)	S(bid bid b3	, cid) cid 23)
Each row of R paired with each row of	S	a2	102		b4	24	
How many rows in result? R * S		a3	103				
Schema compatibility? Not needed	R×	S					
Duplicates? None generated	aid a1	(bid) 101	(bid) b3	cid 23			
$\mathbf{P} \times \mathbf{S}$ has two hid attributes	a1	101	b4	24			
K × 3 Has two blu attributes	a2	102	b3	23			
Not allowed, leave them unnamed	a2	102	b4	24			
Identify attributes by position	a3	103	b3	23			
identity attributes by position	a3	103	b4	24			

13

THETA JOIN EXAMPLE

Stude	Student				
sid	name	age			
12344	Jones	18			
12355	Smith	23			
12366	Gold	21			

Stude	nt 🛚 🛤 si	id=sid E	nrolled		
(sid)	name	age	(sid)	cid	grad
12344	Jones	18	12344	INF-10080	65
12355	Smith	23	12355	INF-11199	72

16

Enrolled

16

15

sid	cid	grade
12344	INF-10080	65
12355	INF-11199	72

Note that output needs a rename operator!

NATURAL JOIN

Syntax: R 🛚 S

Special case of equi-join in which equalities are specified for all matching fields and duplicate fields are projected away

 $R \bowtie S = \pi_{unique fld.} \sigma_{eq.matching fld.} (R \times S)$

Compute R × S Select rows where fields appearing in both relations have equal values

Project onto the set of all unique fields

18

17

age

18

23

21

SUMMARY

Relational Algebra

A small set of operators mapping relations to relations

Operational, in the sense that you specify the explicit order of operations

A closed set of operators! Mix and match

Basic operators: σ , π , ρ , U, –, \times

Important compound operators: ∩, №

R(aid	, bid)	S(bid	, cid
aid	bid		bid	cid
a1	101		101	c3
a2	102		101	c4
a3	103		105	c5
		-		

18

20

	R 🖂	S	
aid	bid	cid	
a1	101	c3	
a1	101	c4	