
Advanced Database Systems
Spring 2025

Lecture #10:

External Sorting & Aggregation

R&G: Chapters 13 & 14

QUERY EXECUTION OVERVIEW

2

SELECT S.name
 FROM Student S, Enrolled E
 WHERE S.sid = E.sid
 AND E.cid = ‘INF-11199’

SQL Query

π S.name(σ E.cid = ‘INF-11199’(

 Student ⋈ S.sid = E.sid Enrolled))

Relational Algebra

Query Parser &
Optimiser

Equivalent to…

But actually will
produce plan with

operator code

π

⋈

σ

Student Enrolled

S.sid = E.sid

E.cid = ‘INF-11199’

Logical Query Plan

S.nameπ

⋈

σ

Student Enrolled

S.sid = E.sid

E.cid = ‘INF-11199’

Optimised Physical Query Plan

S.name

B+ tree

sort-merge join

scan

sorting

QUERY PLANS AND OPERATORS

Query plan = Network of operators able to evaluate a query

One operator may have different implementations

All semantically equivalent

But with different performance characteristics

Focus of this lecture

Implementation of sort

Implementation of (grouped by) aggregation

3

Disk Space Management

Buffer Management

Fi les & Index Management

Operator Execution

Query Planning

Database

SQL Client

WHY DO WE NEED SORTING?

Explicit sorting via the SQL ORDER BY clause

Implicit sorting, e.g., for duplicate elimination

Implicit sorting, e.g., to prepare (sort-merge) equi-join

Grouping via group by, first step in bulk loading tree indexes,

sorted rid scans after access to unclustered indexes, etc.

4

SELECT A, B, C FROM R ORDER BY A;

SELECT DISTINCT A, B, C FROM R;

SELECT R.A, S,C FROM R JOIN S ON R.B = S.B;

SORTING

A file is sorted with respect to key k and ordering Θ, if for any

two records r1 and r2 with r1 preceding r2 in the file, their

corresponding keys are in Θ-order:

A key may be a single attribute or an ordered list of attributes.

In the latter case, the order is lexicographical

Consider key (A,B) and Θ is <

5

r1 Θ r2 ⟺ r1.k Θ r2.k

r1 < r2 ⟺ r1.A < r2.A ∨ (r1.A = r2.A ∧ r1.B < r2.B)

SORTING ALGORITHMS

If data fits in memory, then we can use a standard sorting

algorithm like quick-sort

Problem: sort 100GB of data with 1GB of RAM

Why not virtual memory?

If data does not fit in memory, then we need to use a technique

that is aware of the cost of writing data out to disk

6

EXTERNAL SORTING

How can we sort a file of records whose size exceeds the available main

memory space (let alone the available buffer manager space) by far?

Idea: Divide and conquer

Sort chunks of data that fit in memory, then write back the sorted chunks to disk

Combine sorted chunks into a single larger file

Approach the task in two phases:

1. Sorting a file of arbitrary size is possible using only three buffer pages

2. Refine this algorithm to make effective use of larger buffer sizes

7

OVERVIEW

We will start with a simple example of a 2-way external merge sort

Files are broken up into N pages

The DBMS has a finite number of B fixed-size buffer pages

8

2-WAY EXTERNAL MERGE SORT

Pass #0

Read a page into memory, sort it, and write it back to disk (uses 1 buffer page)

Each sorted set of pages is called a run

Pass #1, #2, #3, …

Recursively merge pairs of runs into runs twice as long (uses 3 buffer pages)

When input is consumed read next page from disk. When output is full, write to disk

9

INPUT 1

INPUT 2

OUTPUT

MEMORY

DISK DISK

2-WAY EXTERNAL MERGE SORT

In each pass, we read and

write each page in file

Number of passes

= 1 + ⌈ log2N ⌉

Total I/O cost

= 2N · (# of passes)

10

3, 4 6, 2 9, 4 8, 7 5, 6 3, 1 2 ∅

2, 3

4, 6

4, 7

8, 9

1, 3

5, 6

2

∅

1, 2

3, 5

2, 3

4, 4

6

∅

6, 7

8, 9

1, 2

2, 3

3, 4

4, 5

6, 6

7, 8

9

∅

3, 4 2, 6 4, 9 7, 8 5, 6 1, 3 2 ∅
PASS

#0

PASS
#1

PASS
#2

PASS
#3

1-PAGE
RUNS

2-PAGE
RUNS

4-PAGE
RUNS

8-PAGE
RUNS

EOF

EXTERNAL MERGE SORT

Previous algorithm uses only three buffer pages (B = 3)

How can we make effective use of a larger buffer pool (B > 3)?

Reduce # of initial runs by using the full buffer space during in-memory sort

Reduce # of passes by merging B - 1 runs at a time

11

INPUT 2

INPUT B-1

OUTPUT

MEMORY

DISK DISK

INPUT 1

…

EXTERNAL MERGE SORT

Pass #0

Use B buffer pages

Produce ⌈ N / B ⌉ sorted runs of size B

Pass #1, #2, #3, …

Merge B - 1 runs (i.e., multi-way merge)

Number of passes = 1 + ⌈ logB-1 ⌈ N / B ⌉ ⌉

Total I/O cost = 2N · (# of passes)

12

EXAMPLE

Sort N = 108 page file with B = 5 buffer pages

Pass #0: ⌈ 108 / 5 ⌉ = 22 sorted runs of 5 pages each (last run is only 3 pages)

Pass #1: ⌈ 22 / 4 ⌉ = 6 sorted runs of 20 pages each (last run is only 8 pages)

Pass #2: ⌈ 6 / 4 ⌉ = 2 sorted runs of 80 pages and 28 pages

Pass #3: Sorted file of 108 pages

Number of passes = 1 + ⌈ logB-1 ⌈ N / B ⌉ ⌉ = 1 + ⌈ log4 22 ⌉ = 1 + ⌈ 2.229… ⌉
 = 4 passes

Total I/O cost = 2N · (# of passes) = 2 · 108 · 4 = 864

13

NUMBER OF PASSES OF EXTERNAL SORT

0

5

10

15

20

25

30

100 1,000 10,000 100,000 1,000,000 1E+07 1E+08 1E+09

N
u

m
b

e
r

o
f

P
a

ss
e

s

Number of Pages (N)

 B=3 (two-way) B=5

 B=10 B=100

 B=1,000 B=100,000

14

USING B+ TREES FOR SORTING

If the table to be sorted has a B+ tree index on the sort attribute(s), we may

be better off by accessing the index and avoid external sorting

Retrieve sorted records by simply traversing the leaf pages of the tree

Cases to consider

Clustered B+ tree

Unclustered B+ tree

17

CASE 1: CLUSTERED B+ TREE

Traverse to the left-most leaf page,

then retrieve all leaf pages (variant A)

If variant B is used?

Additional cost of retrieving data

records: each page fetched just once

Always better than external sorting!

18

Index
(Directs search)

Data Entries
(“Sequence Set”)

Data Records

102 103 104101

CASE 2: UNCLUSTERED B+ TREE

Variant B for index entries

(each contains rid of a data record)

Chase each pointer to the page

that contains the data

This is almost always a bad idea

In general, one I/O per data record

19

Index
(Directs search)

Data Entries
(“Sequence Set”)

Data Records

102 103 104101

DUPLICATE ELIMINATION USING SORTING

20

sid cid grade

123466 INFR-11011 65

123488 INFR-11122 95

123488 INFR-10070 80

123466 INFR-11122 70

123455 INFR-11011 75

Enrolled(sid, cid, grade)

SELECT DISTINCT cid
 FROM Enrolled
 WHERE grade < 90

sid cid grade

123466 INFR-11011 65

123488 INFR-10070 80

123466 INFR-11122 70

123455 INFR-11011 75
Filter

cid

INFR-11011

INFR-10070

INFR-11122

INFR-11011
Remove
Columns

cid

INFR-10070

INFR-11011

INFR-11011

INFR-11122
Sort

Eliminate Duplicates

x

ALTERNATIVE TO SORTING

What if we do not need the data to be ordered?

Forming groups in GROUP BY (no ordering)

Removing duplicates in DISTINCT (no ordering)

Hashing is a better alternative in this scenario

Only need to remove duplicates, no need for ordering

Can be computationally cheaper than sorting

21

EXTERNAL HASHING

We cannot build an in-memory hash table if there is too much data!

Start by splitting up data into smaller pieces!

Use a hash function hp to partition the data

Stream partitions to disk

If we have B pages of buffer, we can split the data into B-1 partitions

1 buffer page reserved for streaming data in

24

Bmain memory buffers

OUTPUT 2

OUTPUT B-1

INPUT

MEMORY

DISK DISK

OUTPUT 1

…
hp

Partitions

EXTERNAL HASHING

If partitions are small enough to fit in memory, we can load them in and

make an in-memory hash table for each one, one at a time

Then we can apply duplicate removal, aggregation, etc. in memory

Every tuple in a partition has the same value when hp is applied!

In-memory hash table must use a different hash function hr that is independent of hp

25

MEMORY

DISK

hr

Partitions

Key Value

Hash Table for Partition Ri

AGGREGATIONS

Collapse multiple tuples into a single scalar value (SUM, MIN, MAX, …)

Hashing aggregates:

Populate an ephemeral hash table as the DBMS scans the relation. For each

record check whether there is already an entry in the hash table

DISTINCT: Discard duplicate

GROUP BY: Perform aggregate computation

If everything fits in memory, then it’s easy

If we have to spill to disk, then we need to be smarter…

28

SELECT A, MAX(B) FROM R

GROUP BY A;

HASHING AGGREGATE

Partition phase

Divide tuples into partitions based on hash key

Rehash phase

Build in-memory hash table for each partition and compute the aggregate

29

HASHING AGGREGATE PHASE #1: PARTITION

Use a hash function h1 to split tuples into partitions on disk

We know that all matches live in the same partition

Partitions are “spilled” to disk via output buffers

30

B main memory buffers

OUTPUT 2

OUTPUT B-1

INPUT

MEMORY

DISK DISK

OUTPUT 1

…
h1

Partitions

HASHING AGGREGATE PHASE #1: PARTITION

31

sid cid grade

123466 INFR-11199 80

123488 INFR-11122 95

123488 INFR-10070 80

123466 INFR-11122 50

123455 INFR-11199 75

Enrolled(sid, cid, grade)

SELECT DISTINCT cid
 FROM Enrolled
 WHERE grade < 90

sid cid grade

123466 INFR-11199 80

123488 INFR-10070 80

123466 INFR-11122 50

123455 INFR-11199 75
Filter

cid

INFR-11199

INFR-10070

INFR-11122

INFR-11199
Remove
Columns

INFR-11011
INFR-10070
INFR-11011

h1

INFR-11122

…

B-1 partitions

HASHING AGGREGATE PHASE #2: REHASH

For each partition on disk:

Read it into memory and build an in-memory hash table

based on a second hash function h2 (≠ h1)

Then go through each bucket of this hash table to bring

together matching tuples

No need to load the entire partition at once in memory

Can load several pages at a time

But the hash table built for each partition must fit in memory

If not enough memory, repeat Phase #1 on each partition with a different hash function

32

HASHING AGGREGATE PHASE #2: REHASH

33

sid cid grade

123466 INFR-11011 80

123488 INFR-11122 95

123488 INFR-10070 80

123466 INFR-11122 50

123455 INFR-11011 75

SELECT DISTINCT cid
 FROM Enrolled
 WHERE grade < 90

Phase #1
Partitions

INFR-11011
INFR-10070
INFR-11011

INFR-11122

…

h2

h2

…

Key Value

INFR-11011 2

INFR-10070 1

Hash Table

Key Value

INFR-11122 1

cid

INFR-11011

INFR-10070

INFR-11122

multiplicity

Enrolled(sid, cid, grade)

HASHING SUMMARISATION

During the Rehash phase, store pairs of the form

GroupKey ⟶ RunningValue

When we want to insert a new tuple into the hash table

If we find a matching GroupKey, just update the RunningValue appropriately

Else insert a new GroupKey ⟶ RunningValue

34

HASHING SUMMARISATION

35

Phase #1
Partitions

(INFR-11011, 80)
(INFR-10070, 80)
(INFR-11011, 75)

(INFR-11122, 50)
(INFR-11122, 95)

…

h2

h2

…

Key Value

INFR-11011 (2,155)

INFR-10070 (1,80)

Hash Table

Key Value

INFR-11122 (2,145)

SELECT cid, AVG(grade)
 FROM Enrolled
 GROUP BY cid

cid AVG(grade)

INFR-11011 77.5

INFR-10070 80

INFR-11122 72.5

sid cid grade

123466 INFR-11011 80

123488 INFR-11122 95

123488 INFR-10070 80

123466 INFR-11122 50

123455 INFR-11011 75

AVG(col) ⟶ (COUNT,SUM)
MIN(col) ⟶ (MIN)
MAX(col) ⟶ (MAX)
SUM(col) ⟶ (SUM)
COUNT(col) ⟶ (COUNT)

Running Totals

Final Result

Enrolled(sid, cid, grade)

COST ANALYSIS

How big of a table can we hash using this approach?

B-1 “spill partitions” in Phase #1

Each partition (i.e., its hash table) should be no more than B pages big

Answer: B · (B-1)

A table of N pages needs about sqrt(N) buffer pages

Note: assumes hash distributes records evenly!

Use a “fudge factor” f > 1 to capture the (small) increase in size

between the partition and a hash table for that partition

Must be B > f · N / (B-1); thus, we need approx. B > sqrt(f · N) buffer pages

36

CONCLUSION: SORTING VS. HASHING

External merge sort often finishes in 1-2 passes

Great if we need output to be sorted anyway

Not sensitive to duplicates or “bad” hash functions

Duplicate elimination

Hashing preferred as it scales with # of distinct values

Delete duplicates in first pass while partitioning

Vs. sort which scales with # of values

Group-by aggregation

Typically computed via hashing

37

	Slide 1
	Slide 2: Query Execution Overview
	Slide 3: Query Plans and Operators
	Slide 4: Why Do We Need Sorting?
	Slide 5: Sorting
	Slide 6: Sorting Algorithms
	Slide 7: External Sorting
	Slide 8: Overview
	Slide 9: 2-Way External Merge Sort
	Slide 10: 2-Way External Merge Sort
	Slide 11: External Merge Sort
	Slide 12: External Merge Sort
	Slide 13: Example
	Slide 14: Number of Passes of External Sort
	Slide 17: Using B+ Trees for Sorting
	Slide 18: Case 1: Clustered B+ Tree
	Slide 19: Case 2: Unclustered B+ Tree
	Slide 20: Duplicate Elimination using Sorting
	Slide 21: Alternative to Sorting
	Slide 24: External Hashing
	Slide 25: External Hashing
	Slide 28: Aggregations
	Slide 29: Hashing Aggregate
	Slide 30: Hashing Aggregate Phase #1: Partition
	Slide 31: Hashing Aggregate Phase #1: Partition
	Slide 32: Hashing Aggregate Phase #2: Rehash
	Slide 33: Hashing Aggregate Phase #2: Rehash
	Slide 34: Hashing Summarisation
	Slide 35: Hashing Summarisation
	Slide 36: Cost Analysis
	Slide 37: Conclusion: Sorting vs. Hashing

