
Advanced Database Systems
Spring 2025

Lecture #14:

Query Optimisation: Plan Space

R&G: Chapter 15

QUERY OPTIMISATION

The bridge between a declarative domain-specific language…

“What” you want as an answer

… and custom imperative computer programs

“How” to compute the answer

A lot of effort has been spent on this problem!

Huge optimisation problem

Big impact on performance!

2

Disk Space Management

Buffer Management

Fi les & Index Management

Operator Execution

Query Planning

Database

SQL Client

QUERY OPTIMISATION: THE GOAL

For a given query, find a correct execution plan that has the lowest “cost”

This is the part of a DBMS that is the hardest to implement well

Proven to be NP-hard

No optimizer truly produces the “optimal” plan

Use estimation techniques to guess real plan cost

Use heuristics to limit the search space

At the very least, avoid really bad plans!

3

QUERY OPTIMISATION STRATEGIES

We will focus on IBM’s System R optimisers

Invented in 1979 by Pat Selinger et al.

A lot of the concepts from System R’s optimiser

still used today in most DB systems

Other optimisation strategies

Volcano / Cascades (SQL Server, Greenplum)

Stratified search (IBM DB2, Oracle)

Randomised search (PostgreSQL)

AI-driven optimisation

4

Notable differences,

but similar big picture

QUERY LIFECYCLE

5

SQL Query

Parser

Executor

Rewriter

Optimiser

Plan Cost

Estimator

Plan

Generator

Schema

& Stats

Catalog

Manager

SQL Parser

Checks correctness, authorisation

Generates a parse tree

Heuristics / rule-based rewriting

Remove stupid / inefficient things

Apply equivalence rules of RA

Cost-based optimisation

Enumerate multiple equivalent plans

Using a cost model pick the cheapest plan

QUERY PARSER

Performs syntactic & semantic analysis

Builds internal representation of the input query

SELECT-FROM-WHERE clauses translated into query blocks

6

Each Ri can be a

base relation or

another query block

QUERY REWRITER

Two relational algebra expressions are equivalent if they generate

the same set of tuples on any given database instance

The query rewriter applies heuristics & RA rules, without looking into

the actual database state (no info about cardinalities, indices, etc.)

Separated from cost-based optimisation to reduce search space

Often only a few, very useful rules are applied

Typically too expensive to explore all possibilities

Rule-system often not confluent

7

SOME SIMPLIFICATIONS

Impossible / unnecessary predicates

Join elimination

8

SELECT * FROM R WHERE 1 = 0

SELECT * FROM R WHERE 1 = 1 SELECT * FROM R

SELECT R1.*

 FROM R AS R1 JOIN R AS R2
 ON R1.id = R2.id

SELECT * FROM R

empty result

CREATE TABLE R (

 id INT PRIMARY KEY,
 val INT NOT NULL)

MORE SIMPLIFICATIONS

Ignoring nested subquery

Merging predicates

9
CREATE TABLE R (

 id INT PRIMARY KEY,
 val INT NOT NULL)

SELECT * FROM R AS R1

 WHERE EXISTS (SELECT * FROM R AS R2
 WHERE R1.id = R2.id);

SELECT * FROM R

SELECT * FROM R

 WHERE val BETWEEN 1 AND 100
 OR val BETWEEN 50 AND 150

SELECT * FROM R

 WHERE val BETWEEN 1 AND 150

QUERY OPTIMISER

10

SQL Query

Parser

Executor

Rewriter

Optimiser

Plan Cost

Estimator

Plan

Generator

Schema

& Stats

Catalog

Manager

Optimises one query block at a time

Enumerates all possible plans

If this yields too many plans, at least

enumerate “promising” plan candidates

Determines the cost of each plan

… using a cost model and catalog statistics

Chooses the best plan per query block

Often not truly “optimal”

QUERY OPTIMISATION: THE COMPONENTS

Three (mostly) orthogonal concerns:

Plan space

For a given query, what plans are considered?

Larger the plan space, more likely to find a cheaper plan, but harder to search

Cost estimation

How is the cost of a plan estimated?

Want to find the cheapest plan

Search strategy

How do we “search” in the “plan space”?

12

PLAN SPACE

To generate a space of candidate plans, we need to think about how to

rewrite relational algebra expressions into other ones

Therefore, need a set of equivalence rules

14

RELATIONAL ALGEBRA EQUIVALENCES

Selections

σc1 ∧ c2 ∧ … ∧ cn (R) ≡ σc1 (σc2 (… σcn (R))) (cascade)

σc1 (σc2 (R)) ≡ σc2 (σc1 (R)) (commute)

Projections

πa1 (… (R)…) ≡ πa1 (… (πa1, …, an-1 (R)) …) (cascade)

Essentially, allows partial projection earlier in the expression

As long as we’re keeping a1 (and everything else we need outside) we’re OK

15

RELATIONAL ALGEBRA EQUIVALENCES

Selections

σc1 ∧ c2 ∧ … ∧ cn (R) ≡ σc1 (σc2 (… σcn (R))) (cascade)

σc1 (σc2 (R)) ≡ σc2 (σc1 (R)) (commute)

Projections

πa1 (… (R)…) ≡ πa1 (… (πa1, …, an-1 (R)) …) (cascade)

Cartesian products

R x (S x T) ≡ (R x S) x T (associative)

R x S ≡ S x R (commutative)

Recall that the ordering of attributes doesn’t matter

16

ARE JOINS ASSOCIATIVE AND COMMUTATIVE?

After all, just Cartesian products with selections

You can think of them as associative and commutative

… but beware of joins turning into cross-products!

Consider R(A,Y), S(A,B), T(B,Z)

Attempt 1: (S ⋈S.B=T.B T) ⋈ S.A=R.A R ≢ S ⋈S.B=T.B (T ⋈S.A=R.A R) Not legal!

 (join on A not allowed)

Attempt 2: (S ⋈S.B=T.B T) ⋈ S.A=R.A R ≢ S ⋈ S.B=T.B (T x R) Not the same!

 (no condition on A)

Attempt 3: (S ⋈S.B=T.B T) ⋈ S.A=R.A R ≡ S ⋈S.B=T.B ∧ S.A=R.A (T x R) The same!

17

JOIN ORDERING

Similarly, note that some join orders have cross products, some don’t

Equivalent for the query on the right:

18

SELECT *
 FROM R, S, T
 WHERE R.A = S.A
 AND S.B = T.B

R S

⋈ T

⋈

(R ⋈ R.A=S.A S) ⋈ S.B=T.B T

S T

⋈R

⋈

R ⋈ R.A=S.A (S ⋈ S.B=T.B T)

T S

⋈R

⋈

R ⋈ R.A=S.A (T ⋈ S.B=T.B S)

R T

x S

⋈

(R x T) ⋈ R.A=S.A ∧ S.B=T.B S

INTRODUCING ADDITIONAL JOIN CONDITIONS

Implicit join through transitivity…

… can be turned into

... making the join ordering (R ⋈ T) ⋈ S possible (avoids a Cartesian product)

19

SELECT * FROM R, S, T

 WHERE R.A = S.B AND S.B = T.C

SELECT * FROM R, S, T

 WHERE R.A = S.B AND S.B = T.C AND R.A = T.C

PLAN SPACE

To generate a space of candidate plans, we need to think about how to

rewrite relational algebra expressions into other ones

Therefore, need a set of equivalence rules – done

Need heuristics to restrict attention to plans that are mostly better

We have already seen one of these in the relational algebra lecture

20

COMMON HEURISTICS: SELECTIONS

Filter as early as possible

Reorder predicates so that the DBMS applies the most selective one first

Break complex predicates and push down

σc1 ∧ c2 ∧ … ∧ cn (R) = σc1 (σc2 (… σcn (R)))

Simplify complex predicates

X = Y AND Y = 3 ⇒ X = 3 AND Y = 3

L.TAX * 100 < 5 ⇒ L.TAX < 0.05

21

HEURISTICS: SELECTION PUSHDOWN

Apply selections as soon as you have the relevant columns

Why is this an improvement?

Selection is essentially free, joins are expensive

Side effect is that the intermediate inputs to joins are smaller

22

Reserves Sailors

⋈sid=sid

σ bid=100 ∧ rating > 5

π sname

Reserves Sailors

⋈sid=sid

π sname

σ rating > 5 σ bid=100

COMMON HEURISTICS: PROJECTIONS

Perform them early to create smaller tuples and reduce intermediate results

(if duplicates are eliminated)

Project out all attributes except the ones requested or required

(e.g., joining keys)

This is not important for column stores…

23

HEURISTICS: PROJECTION PUSHDOWN

Keep only the columns you need to evaluate downstream operators

Other rewritings exist! (reorder selection and projection)

24

Reserves Sailors

⋈sid=sid

π sname

σ rating > 5 σ bid=100

Reserves Sailors

⋈sid=sid

π sname

σ rating > 5 σ bid=100

π sname,sidπ sid

COMMON HEURISTICS

Avoid Cartesian products

Given a choice, do theta-joins rather than cross-products

Consider R(A, B), S(B, C), T(C, D)

Favour (R ⋈ S) ⋈ T over (R x T) ⋈ S

Case where this doesn’t quite improve things:

If R x T is small (e.g., R & T are very small and S is relatively large)

Still it’s a good enough heuristic that we will use it

25

R S

⋈ T

⋈

R T

x S

⋈

PLAN SPACE

To generate a space of candidate plans, we need to think about how to

rewrite relational algebra expressions into other ones

Therefore, need a set of equivalence rules – done

Need heuristics to restrict attention to plans that are mostly better – done

Both of these were logical equivalences, need also physical equivalences

26

PHYSICAL EQUIVALENCES

Base table access

Heap scan

Index scan (if available on referenced columns)

Equijoins

Block Nested Loops: simple, exploits extra memory

Index Nested Loops: often good if 1 table is small and the other indexed properly

Sort-Merge Join: good with small memory, equal-size tables

Grace Hash Join: even better than sort with 1 small table

Non-Equijoins

Block Nested Loops

27

SUMMARY

There are lots of plans

Even for a relatively simple query

Manual query planning can be tedious, technical

Machines are better at enumerating options than people

Query rewriting

DBMSs can identify better query plans even without a cost model

Filtering as early as possible is usually a good choice

28

	Slide 1
	Slide 2: Query Optimisation
	Slide 3: Query Optimisation: The Goal
	Slide 4: Query Optimisation Strategies
	Slide 5: Query Lifecycle
	Slide 6: Query Parser
	Slide 7: Query Rewriter
	Slide 8: Some Simplifications
	Slide 9: More Simplifications
	Slide 10: Query Optimiser
	Slide 12: Query Optimisation: The Components
	Slide 14: Plan Space
	Slide 15: Relational Algebra Equivalences
	Slide 16: Relational Algebra Equivalences
	Slide 17: Are Joins Associative and Commutative?
	Slide 18: Join Ordering
	Slide 19: Introducing Additional Join Conditions
	Slide 20: Plan Space
	Slide 21: Common Heuristics: Selections
	Slide 22: Heuristics: Selection Pushdown
	Slide 23: Common Heuristics: Projections
	Slide 24: Heuristics: Projection Pushdown
	Slide 25: Common Heuristics
	Slide 26: Plan Space
	Slide 27: Physical Equivalences
	Slide 28: Summary

