
Advanced Database Systems
Spring 2025

Lecture #15:

Query Optimisation: Plan Space Example

R&G: Chapter 15

THE PLAN SPACE OF A SIMPLE QUERY

2

 1000 pages, 100 tuples per page

 Each tuple is 40 bytes long

 Assume 100 boats (each equally likely)

 500 pages, 80 tuples per page

 Each tuple is 50 bytes long

 Assume 10 different ratings (each equally likely)

Assume we have B = 5 pages to use for joins

Remember: just counting I/Os

EXAMPLE DATABASE

3

sid sname rating age

Sailors

sid bid day rname

Reserves

QUERY PLAN 1

Here’s a reasonable query plan ⇒

4

SELECT S.sname
 FROM Reserves R, Sailors S
 WHERE R.sid = S.sid
 AND R.bid = 100
 AND S.rating > 5

Sailors Reserves

⋈sid=sid

SCAN

σ rating > 5

σ bid=100

π sname

SCAN

PAGE NESTED LOOPS

ON-THE-FLY

ON-THE-FLY

ON-THE-FLY

QUERY PLAN 1 COST

Cost estimation:

 Scan Sailors: 500 I/Os

 For each page of Sailors

 Scan Reserves: 1000 I/Os

 Total = 500 + 500 · 1000

 Total = 500,500 I/Os

5

Sailors Reserves

⋈sid=sid

SCAN

σ rating > 5

σ bid=100

π sname

SCAN

PAGE NESTED LOOPS

ON-THE-FLY

ON-THE-FLY

ON-THE-FLY

QUERY PLAN 1 COST ANALYSIS

Cost: 500,500 I/Os

By no means a terrible plan!

Misses several opportunities

Selections could be ‘pushed’ down

No use of indexes

Goal of optimisation

Find faster plans that compute the same answer

6

Sailors Reserves

⋈sid=sid

SCAN

σ rating > 5

σ bid=100

π sname

SCAN

PAGE NESTED LOOPS

ON-THE-FLY

ON-THE-FLY

ON-THE-FLY

SELECTION PUSHDOWN

7

Sailors Reserves

⋈sid=sid

SCAN

σ rating > 5

σ bid=100

π sname

SCAN

PAGE NESTED LOOPS

Sailors Reserves

⋈sid=sid

SCAN

σ rating > 5

σ bid=100

π sname

SCAN

PAGE NESTED LOOPS

Cost?500,500 I/Os

QUERY PLAN 2 COST

Cost estimation:

 Scan Sailors: 500 I/Os

 For each page of high-rated Sailors

 Scan Reserves: 1000 I/Os

 Total = 500 + ??? · 1000

Remember: 10 ratings, all equally likely

 Total = 500 + (500 / 2) · 1000

 Total = 250,500 I/Os

8

Sailors Reserves

⋈sid=sid

SCAN

σ rating > 5

σ bid=100

π sname

SCAN

PAGE NESTED LOOPS

DECISION 1
9

Sailors Reserves

⋈sid=sid

SCAN

σ rating > 5

σ bid=100

π sname

SCAN

PAGE NESTED LOOPS

Sailors Reserves

⋈sid=sid

SCAN

σ rating > 5

σ bid=100

π sname

SCAN

PAGE NESTED LOOPS

500,500 I/Os 250,500 I/Os

MORE SELECTION PUSHDOWN

10

Sailors Reserves

⋈sid=sid

SCAN

σ rating > 5

σ bid=100

π sname

SCAN

PAGE NESTED LOOPS

250,500 I/Os Cost?

Sailors Reserves

⋈sid=sid

SCAN

σ rating > 5 σ bid=100

π sname

SCAN

PAGE NESTED LOOPS

Cost estimation:

 Scan Sailors: 500 I/Os

 For each page of high-rated Sailors

 Read through Reserves tuples that match

 Total = 500 + 250 · ???

For each scan of Reserves, we filter on-the-fly

Problem: This does not actually save any I/Os

To find matching Reserves tuples, we end up scanning Reserves the same # of times (1000)

QUERY PLAN 3 COST

11

Sailors Reserves

⋈sid=sid

SCAN

σ rating > 5 σ bid=100

π sname

SCAN

PAGE NESTED LOOPS

DECISION 2
12

Sailors Reserves

⋈sid=sid

SCAN

σ rating > 5

σ bid=100

π sname

SCAN

PAGE NESTED LOOPS

250,500 I/Os 250,500 I/Os

Sailors Reserves

⋈sid=sid

SCAN

σ rating > 5 σ bid=100

π sname

SCAN

PAGE NESTED LOOPS

Pushing a selection into the

inner loop of a nested loop

join does not save I/Os!

Essentially equivalent to

having the selection above.

SO FAR, WE’VE TRIED

Basic page nested loops (500,500)

Selection pushdown on left (250,500)

More selection pushdown on right (250,500)

Next: join ordering

13

JOIN ORDERING

14

250,500 I/Os Cost?

Sailors Reserves

⋈sid=sid

SCAN

σ rating > 5 σ bid=100

π sname

SCAN

PAGE NESTED LOOPS

Reserves Sailors

⋈sid=sid

SCAN

σ bid=100 σ rating > 5

π sname

SCAN

PAGE NESTED LOOPS

Cost estimation:

 Scan Reserves: 1000 I/Os

 For each page of Reserves for bid 100

 Scan Sailors: 500 I/Os

 Total = 1000 + ??? · 500

Uniformly distributed across 100 boat values

 Total = 1000 + (1000 / 100) · 500

 Total = 6000 I/Os

QUERY PLAN 4 COST

15

Reserves Sailors

⋈sid=sid

SCAN

σ bid=100 σ rating > 5

π sname

SCAN

PAGE NESTED LOOPS

DECISION 3
16

250,500 I/Os

Sailors Reserves

⋈sid=sid

SCAN

σ rating > 5 σ bid=100

π sname

SCAN

PAGE NESTED LOOPS

Reserves Sailors

⋈sid=sid

SCAN

σ bid=100 σ rating > 5

π sname

SCAN

PAGE NESTED LOOPS

6000 I/Os

SO FAR, WE’VE TRIED

Basic page nested loops (500,500)

Selection pushdown on left (250,500)

More selection pushdown on right (250,500)

Join ordering (6000)

Next: materialisation

17

MATERIALISING INNER LOOPS

If you recall, selection pushdown

on the right doesn’t help because

it is done on the fly.

What if we materialize the result

after the selection?

18

6000 I/Os

Reserves Sailors

⋈sid=sid

SCAN

σ bid=100 σ rating > 5

π sname

SCAN

PAGE NESTED LOOPS

QUERY PLAN 5 COST

Cost estimation:

 Scan Reserves: 1000 I/Os

 Scan Sailors: 500 I/Os

 Materialise temp table T1: ??? I/Os

 For each page of Reserves for bid 100

 Scan T1: ??? I/Os

 Total = 1000 + 500 + ??? + 10 · ???

Ratings from 1 to 10, uniformly distributed

 Total = 1000 + 500 + 250 + 10 · 250 = 4250 I/Os

19

Reserves

Sailors

⋈sid=sid

SCAN

σ bid=100

σ rating > 5

π sname

SCAN

PAGE NESTED LOOPS

Materialisation

DECISION 4
20

Reserves Sailors

⋈sid=sid

SCAN

σ bid=100 σ rating > 5

π sname

SCAN

PAGE NESTED LOOPS

6000 I/Os

Reserves

Sailors

⋈sid=sid

SCAN

σ bid=100

σ rating > 5

π sname

SCAN

PAGE NESTED LOOPS

Materialisation

4250 I/Os

Let’s try flipping the join order again

with materialisation trick

JOIN ORDERING AGAIN

21

Reserves

Sailors

⋈sid=sid

SCAN

σ bid=100

σ rating > 5

π sname

SCAN

PAGE NESTED LOOPS

Materialisation

4250 I/Os

Cost estimation:

 Scan Sailors: 500 I/Os

 Scan Reserves: 1000 I/Os

 Materialise temp table T1: ??? I/Os

 For each page of high-rated Sailors

 Scan T1: ??? I/Os

 Total = 500 + 1000 + ??? + 250 · ???

100 boat values, uniformly distributed

 Total = 500 + 1000 + 10 + 250 · 10 = 4010 I/Os

QUERY PLAN 6 COST

22

Sailors

Reserves

⋈sid=sid

SCAN

σ rating > 5

σ bid=100

π sname

SCAN

PAGE NESTED LOOPS

Materialisation

DECISION 5
23

Reserves

Sailors

⋈sid=sid

SCAN

σ bid=100

σ rating > 5

π sname

SCAN

PAGE NESTED LOOPS

Materialisation

4250 I/Os

Sailors

Reserves

⋈sid=sid

SCAN

σ rating > 5

σ bid=100

π sname

SCAN

PAGE NESTED LOOPS

Materialisation

4010 I/Os

SO FAR, WE’VE TRIED

Basic page nested loops (500,500)

Selection pushdown on left (250,500)

More selection pushdown on right (250,500)

Join ordering (6000)

Materialising inner loop (4250)

Join ordering again with materialisation (4010)

Next: sort merge join

24

What if change the join algorithm?

JOIN ALGORITHM

25

Sailors

Reserves

⋈sid=sid

SCAN

σ rating > 5

σ bid=100

π sname

SCAN

PAGE NESTED LOOPS

Materialisation

Cost estimation with 5 buffers:

 Scan Sailors: 500 I/Os

 Scan Reserves: 1000 I/Os

 Sort high-rated Sailors: ??? I/Os

 Pass 0 doesn’t do read I/O, just gets input from select

 Sort reservations for boat 100 : ??? I/Os

 Pass 0 doesn’t do read I/O, just gets input from select

 How many passes for each sort?

 Merge: (10 + 250) = 260 I/Os

QUERY PLAN 7 COST

26

Sailors Reserves

⋈sid=sid

SCAN

σ rating > 5 σ bid=100

π sname

SCAN

SORT MERGE

External sort with 5 buffers:

 1 + ⌈ log4 (10/5) ⌉ = 2 passes for Reserves

 Pass 0 = 10 to write

 Pass 1 = 2 · 10 = 20 to read/write

 1 + ⌈ log4 (250/5) ⌉ = 4 passes for Sailors

 Pass 0 = 250 to write

 Pass 1, 2, 3 = 2 · 250 = 500 to read/write

Total = scan both (1000 + 500) +

 sort Reserves (10 + 20) +

 sort Sailors (250 + 3 · 500) + merge (260) = 3540 I/Os

QUERY PLAN 7 COST, PART 2
27

Sailors Reserves

⋈sid=sid

SCAN

σ rating > 5 σ bid=100

π sname

SCAN

SORT MERGE

DECISION 6
28

Sailors

Reserves

⋈sid=sid

SCAN

σ rating > 5

σ bid=100

π sname

SCAN

PAGE NESTED LOOPS

Materialisation

4010 I/Os

Sailors Reserves

⋈sid=sid

SCAN

σ rating > 5 σ bid=100

π sname

SCAN

SORT MERGE

3540 I/Os

SO FAR, WE’VE TRIED

Basic page nested loops (500,500)

Selection pushdown on left (250,500)

More selection pushdown on right (250,500)

Join ordering (6000)

Materialising inner loop (4250)

Join ordering again with materialisation (4010)

Sort merge join (3540)

Next: block nested loops join

29

JOIN ALGORITHM AGAIN, AGAIN

30

4010 I/Os
(and sort merge at 3510 I/Os)

Sailors

Reserves

⋈sid=sid

SCAN

σ rating > 5

σ bid=100

π sname

SCAN

BLOCK NESTED LOOPS

Materialisation

Cost?

Sailors

Reserves

⋈sid=sid

SCAN

σ rating > 5

σ bid=100

π sname

SCAN

PAGE NESTED LOOPS

Materialisation

Returning to our best

(so far) page nested

loops plan again…

QUERY PLAN 8 COST

Cost estimation with 5 buffers:

 Scan Sailors: 500 I/Os

 Scan Reserves: 1000 I/Os

 Write temp table T1: 10 I/Os

 For each block of high-rated Sailors

 Iterate over T1: ??? · 10 I/Os

 Block size = 3, #blocks (???) = ceil(250/3) = 84

 Sailors tuples pipelined from select

Total = scan both (500 + 1000) + write T1 (10) + BNLJ (84 · 10) = 2350 I/Os

31

Sailors

Reserves

⋈sid=sid

SCAN

σ rating > 5

σ bid=100

π sname

SCAN

BLOCK NESTED LOOPS

Materialisation

DECISION 7
32

3540 I/Os

Sailors Reserves

⋈sid=sid

SCAN

σ rating > 5 σ bid=100

π sname

SCAN

SORT MERGE

2350 I/Os

Sailors

Reserves

⋈sid=sid

SCAN

σ rating > 5

σ bid=100

π sname

SCAN

BLOCK NESTED LOOPS

Materialisation

SO FAR, WE’VE TRIED

Basic page nested loops (500,500)

Selection pushdown on left (250,500)

More selection pushdown on right (250,500)

Join ordering (6000)

Materialising inner loop (4250)

Join ordering again with materialisation (4010)

Sort merge join (3540)

Block nested loops join (2350)

Next: projection cascade

33

PROJECTION CASCADE & PUSHDOWN

34

Sailors

Reserves

⋈sid=sid

SCAN

σ rating > 5

σ bid=100

π sname

SCAN

BLOCK NESTED LOOPS

Materialisation

2350 I/Os

Sailors

Reserves

⋈sid=sid

SCAN

σ rating > 5

σ bid=100

π sname

SCAN

BLOCK NESTED LOOPS

Materialisation

π sid

π sid, sname

Super small!

Just one page – can

make this the outer

relation in BNLJ

10 pages
(40 bytes per tuple)

1000 pages
(40 bytes per tuple)

1 page
(4 bytes per tuple)

WITH JOIN REORDERING, NO MAT.

Will try reordering the join again

Will also skip on the materialisation for this

Convince yourself that it doesn’t help

35

Sailors

Reserves

⋈sid=sid

SCAN

σ rating > 5

σ bid=100

π sname

SCAN

BLOCK NESTED LOOPS

Materialisation

π sid

π sid, sname

QUERY PLAN 9 COST

Cost estimation with 5 buffers:

 Scan Reserves: 1000 I/Os

 For each block of sids that rented boat 100

 Iterate over Sailors: ??? · 500 I/Os

Recall: Reserves tuple is 40B, assume sid is 4B

10 pages down to 1 page

Total = 1000 + 1 · 500 = 1500 I/Os

36

Reserves Sailors

⋈sid=sid

SCAN

σ bid=100 σ rating > 5

π sname

SCAN

BLOCK NESTED LOOPS

π sid, snameπ sid

DECISION 8
37

2350 I/Os 1500 I/Os
Cannot do better w/o indexes. Why?

Sailors

Reserves

⋈sid=sid

SCAN

σ rating > 5

σ bid=100

π sname

SCAN

BLOCK NESTED LOOPS

Materialisation

Reserves Sailors

⋈sid=sid

SCAN

σ bid=100 σ rating > 5

π sname

SCAN

BLOCK NESTED LOOPS

π sid, snameπ sid

SO FAR, WE’VE TRIED

Basic page nested loops (500,500)

Selection pushdown on left (250,500)

More selection pushdown on right (250,500)

Join ordering (6000)

Materialising inner loop (4250)

Join ordering again with materialisation (4010)

Sort merge join (3540)

Block nested loops join (2350)

Projection cascade, plus reordering again (1500)

Next: indexes

38

HOW ABOUT INDEXES?

Indexes

Clustered tree index on Reserves.bid

Unclustered tree index on Sailors.sid

Assume indexes fit in memory

39

.

Reserves.bid Sailors.sid

bid=100 (on 10 pages)

Reserves Sailors

⋈sid=sid

INDEX SCAN

σ bid=100

σ rating > 5

π sname

INDEX SCAN

INDEX NESTED LOOPS

HOW ABOUT INDEXES?

Notes about our query plan:

No projection pushdown to left for π sid

Projecting out unnecessary fields from outer

relation of INLJ does not make an I/O difference

(still doing things per tuple)

No selection pushdown to right for σrating > 5

Does not affect Sailors.sid index lookup

(I/O cost remains the same)

40

Reserves Sailors

⋈sid=sid

INDEX SCAN

σ bid=100

σ rating > 5

π sname

INDEX SCAN

INDEX NESTED LOOPS

HOW ABOUT INDEXES?

With clustered index on bid of Reserves,

we access how many pages of Reserves?

100,000 / 100 = 1000 tuples on 1000 / 100 = 10 pages

Join column sid is a key for Sailors

At most one matching tuple using unclustered

index on sid

41

Reserves Sailors

⋈sid=sid

INDEX SCAN

σ bid=100

σ rating > 5

π sname

INDEX SCAN

INDEX NESTED LOOPS

HOW ABOUT INDEXES?

With clustered index on bid of Reserves,

we access how many pages of Reserves?

100,000 / 100 = 1000 tuples on 1000 / 100 = 10 pages

Foreach such Reserves tuple (1000 tuples)

 Get matching Sailors tuple (1 I/O)

Total = 10 + 1000 · 1 = 1010 I/Os

42

Reserves Sailors

⋈sid=sid

INDEX SCAN

σ bid=100

σ rating > 5

π sname

INDEX SCAN

INDEX NESTED LOOPS

THE ENTIRE STORY

Basic page nested loops (500,500)

Selection pushdown on left (250,500)

More selection pushdown on right (250,500)

Join ordering (6000)

Materialising inner loop (4250)

Join ordering again with materialisation (4010)

Sort merge join (3540)

Block nested loops join (2350)

Projection cascade, plus reordering again (1500)

Index Nested Loops Join (1010)

Still only a subset of the possible plans for this query!!!

43

	Slide 1
	Slide 2: The Plan Space of a Simple Query
	Slide 3: Example Database
	Slide 4: Query Plan 1
	Slide 5: Query Plan 1 Cost
	Slide 6: Query Plan 1 Cost Analysis
	Slide 7: Selection Pushdown
	Slide 8: Query Plan 2 Cost
	Slide 9: Decision 1
	Slide 10: More Selection Pushdown
	Slide 11: Query Plan 3 Cost
	Slide 12: Decision 2
	Slide 13: So Far, We’ve Tried
	Slide 14: Join Ordering
	Slide 15: Query Plan 4 Cost
	Slide 16: Decision 3
	Slide 17: So Far, We’ve Tried
	Slide 18: Materialising Inner Loops
	Slide 19: Query Plan 5 Cost
	Slide 20: Decision 4
	Slide 21: Join Ordering Again
	Slide 22: Query Plan 6 Cost
	Slide 23: Decision 5
	Slide 24: So Far, We’ve Tried
	Slide 25: Join Algorithm
	Slide 26: Query Plan 7 Cost
	Slide 27: Query Plan 7 Cost, Part 2
	Slide 28: Decision 6
	Slide 29: So Far, We’ve Tried
	Slide 30: Join Algorithm Again, Again
	Slide 31: Query Plan 8 Cost
	Slide 32: Decision 7
	Slide 33: So Far, We’ve Tried
	Slide 34: Projection Cascade & Pushdown
	Slide 35: With Join Reordering, no Mat.
	Slide 36: Query Plan 9 Cost
	Slide 37: Decision 8
	Slide 38: So Far, We’ve Tried
	Slide 39: How About Indexes?
	Slide 40: How About Indexes?
	Slide 41: How About Indexes?
	Slide 42: How About Indexes?
	Slide 43: The Entire Story

