
Advanced Database Systems
Spring 2025

Lecture #18:

Transactions

R&G: Chapters 16 & 17

ARCHITECTURE OF A DBMS

Up until now we have assumed a

single-user architecture and failure-

free execution

2

Disk Space Management

Buffer Management

Files & Index Management

Operator Execution

Query Planning

Database

SQL Client

Recovery

Concurrency Control

MOTIVATION

We both change the same record in

a table at the same time.

How to avoid race condition?

You transfer £100 between bank accounts

but there is a power failure.

What is the correct database state?

3

Both concurrency control and recovery are based

on a concept of transactions with ACID properties

Concurrency Control

Recovery

TRANSACTIONS

A transaction is the execution of a

sequence of operations (e.g., SQL

queries) on a shared database to

perform some higher-level function

Basic unit of change in a DBMS

Partial transactions are not allowed!

4

BEGIN XACT

SELECT

INSERT

DELETE

COMMIT

Transaction 1

BEGIN XACT

INSERT

DELETE

ROLLBACK

Transaction 2

BEGIN XACT

DELETE

DELETE

COMMIT

Transaction 3

USER PERSPECTIVE: TRANSACTIONS

Transaction (abbr. txn) = group of operations the user wants

the DBMS to treat “as one”

A new transaction starts with the BEGIN command

The transaction stops with either COMMIT or ABORT (ROLLBACK)

If commits, all changes are saved

If aborts, all changes are undone (as if the txn never executed at all)

Abort can be either self-inflicted or caused by DBMS

5

TRANSACTION EXAMPLE

Transfer £100 from Checking to Savings account of user 1904

6

BEGIN

// check if Checking balance > 100

UPDATE Accounts
SET balance = balance – 100

WHERE customer_id = 1904
AND account_type = ‘Checking’;

UPDATE Accounts
SET balance = balance + 100

WHERE customer_id = 1904
AND account_type = ‘Savings’;

COMMIT

Temporary inconsistent DB

Consistent DB

Consistent DB

TRANSACTION EXAMPLE

Transfer £100 from Checking to Savings account of user 1904

7

BEGIN

// check if Checking balance > 100

UPDATE Accounts
SET balance = balance – 100

WHERE customer_id = 1904
AND account_type = ‘Checking’;

UPDATE Accounts
SET balance = balance + 100

WHERE customer_id = 1904
AND account_type = ‘Savings’;

COMMIT

How to check if balance > 100?

Outside DBMS using another language

E.g., in Java or PHP code

Inside DBMS using stored procedures

expressed in PL/SQL or T-SQL

PL/SQL = SQL + procedural constructs such as

if-then-else, loops, variables, functions…

DATABASE PERSPECTIVE

A transaction may carry out many operations on the data

retrieved from the database

However, the DBMS is only concerned about what data is

read/written from/to the database

Changes to the “outside world” are beyond scope of the DBMS

8

TRANSACTIONS: FORMAL DEFINITION

Database = fixed set of named data objects (A, B, C, …)

Transactions access object A using read A and write A, for short R(A) and W(A)

In a relational DBMS, an object can be an attribute, record, page, or table

Transaction = sequence of read and write operations

T = ⟨ R(A), W(A), W(B), … ⟩

DBMS’s abstract view of a user program

9

STRAWMAN EXECUTION

Execute each txn one-by-one (serial order) as they arrive in the DBMS

One and only one txn can be running at the same time in the DBMS

Before a txn starts, copy the entire database to a new file and make all

changes to that file

If the txn completes successfully, overwrite the original file with the new one

If the txn fails, just remove the dirty copy

SQLite executes transactions in serial order

10

CONCURRENT EXECUTION

A better approach is to allow concurrent execution of independent transactions

Why do we want that?

Better resource utilization and throughput (txns/sec)

Use the CPU while another txn is waiting for the disk

Multicore: Ideally, scale throughput in the # of CPUs

Decreased response times to users

One txn’s latency need not be dependent on another unrelated txn

Or that’s the hope

But we also would like correctness and fairness

11

3

2

1

3

2

1

3

2

1

Txn 1 Txn 2 Txn 3

S C H E D U L E R

1

2

1

1

E X E C U T O R

TRANSACTION GUARANTEES: ACID

Atomicity: All actions in the txn happen, or none happen

Consistency: If each txn is consistent and the DB starts

consistent, then it ends up consistent

Isolation: Execution of one txn is isolated from that of other txns

Durability: If a txn commits, its effects persist

12

“all or nothing”

“it looks correct to me”

“as if alone”

“survive failures”

ACID PROPERTIES: ATOMICITY

Two possible outcomes of executing a transaction:

Commit after completing all actions

Abort (or be aborted by the DBMS) after executing some actions

The DBMS guarantees that transactions are atomic

From user’s point of view:

A transaction always either executes all its actions or executes no actions at all

Example:

Take £100 from account A, but then a power failure happens before crediting account B

When the DBMS comes back online, what should be the correct state of the database?

13

MECHANISMS FOR ENSURING ATOMICITY

Approach #1: Logging

DBMS logs all actions so that it can undo the actions of aborted transactions

Write-ahead logging is used by almost all modern database systems

Efficiency reasons: random writes turned into sequential writes through a log

Audit trail: everything done by the app is recorded

Approach #2: Shadow Paging (copy-on-write)

DBMS makes copies of pages and transactions make changes to those copies

Only when the transaction commits is the page made visible to others

Few database systems do this (CouchDB, LMDB)

14

ACID PROPERTIES: CONSISTENCY

Database consistency

The database accurately models the real world and follows integrity constraints

Transactions in the future see the effects of transactions committed in the past

Transaction consistency

If the database is consistent before the txn starts (running alone), it will be also consistent after

Transaction consistency is the application’s responsibility!

15

ACID PROPERTIES: ISOLATION

Users submit transactions, and each transaction executes as

if it was running alone

The DBMS achieves concurrency by interleaving actions

(read/writes of database objects) of various transactions

How do we achieve this?

16

MECHANISMS FOR ENSURING ISOLATION

A concurrency control protocol is how the DBMS decides the proper

interleaving of operations from multiple transactions

Two main categories:

Pessimistic: Don’t let problems arise in the first place

Optimistic: Assume conflicts are rare, deal with them after they happen

17

EXAMPLE

Assume at first accounts A and B each have £1000

T1 transfers £100 from A to B

T2 credits both accounts with 6% interest

18

BEGIN
A = A - 100
B = B + 100
END

BEGIN
A = A * 1.06
B = B * 1.06
END

T1 T2

EXAMPLE

Assume at first accounts A and B each have £1000

What are the possible outcomes of running T1 and T2?

Many! But A+B should be 2000 * 1.06 = 2120

There is no guarantee that T1 will execute before T2 or vice versa,

if both are submitted together

But the net effect must be equivalent to these two transactions running

serially in some order

20

EXAMPLE: SERIAL EXECUTION

22

BEGIN
A = A - 100
B = B + 100
COMMIT

BEGIN
A = A * 1.06
B = B * 1.06

COMMIT

T1 T2

Schedule
T

I
M

E

≡

Schedule

BEGIN
A = A * 1.06
B = B * 1.06
COMMIT

BEGIN
A = A - 100
B = B + 100

COMMIT

T1 T2

A = 954, B = 1166 A = 960, B = 1160

A+B = 2120

EXAMPLE: INTERLEAVING (GOOD)
24

BEGIN
A = A - 100

BEGIN
A = A * 1.06

B = B + 100
COMMIT

B = B * 1.06

COMMIT

T1 T2

A = 954, B = 1166

Schedule
T

I
M

E

≡

Schedule

BEGIN
A = A - 100
B = B + 100
COMMIT

BEGIN
A = A * 1.06
B = B * 1.06

COMMIT

T1 T2

A = 954, B = 1166

≢

EXAMPLE: INTERLEAVING (BAD)
25

BEGIN
A = A - 100

BEGIN
A = A * 1.06
B = B * 1.06
COMMIT

B = B + 100

COMMIT

T1 T2

A = 954, B = 1160

Schedule
T

I
M

E

The bank is missing £6!

A = 954, B = 1166

or

A = 960, B = 1160

A+B = 2114

EXAMPLE: INTERLEAVING (BAD)
26

BEGIN
A = A - 100

BEGIN
A = A * 1.06
B = B * 1.06
COMMIT

B = B + 100

COMMIT

T1 T2

A = 954, B = 1160

Schedule
T

I
M

E
DBMS View

BEGIN
R(A)
W(A)

BEGIN
R(A)
W(A)
R(B)
W(B)
COMMIT

R(B)
W(B)

COMMIT

T1 T2

A+B = 2114

CORRECTNESS

How do we judge whether a schedule is correct?

If the schedule is equivalent to some serial execution

27

Schedule S for a set of transactions { T1, … , Tn }

S contains all steps of all transactions and order among steps in each Ti is preserved

S = ⟨ (T1, read B), (T2, read A), (T2, write B), (T1, write A) ⟩

for short, S = ⟨ R1(B), R2(A), W2(B), W1(A) ⟩

FORMAL PROPERTIES OF SCHEDULES

Equivalent schedules

For any database state, the effect of executing the first schedule is identical

to the effect of executing the second schedule

Does not matter what the higher-level operations are!

Serial schedule (no concurrency)

A schedule that does not interleave the actions of different transactions

28

T I M E

321321 321

Txn 1Txn 2 Txn 3

FORMAL PROPERTIES OF SCHEDULES

Serializable schedule

A schedule that is equivalent to some serial execution of the transactions

If each transaction preserves consistency, every serializable

schedule preserves consistency

Serializability

Less intuitive notion of correctness compared to transaction initiation time

or commit order

But it provides the DBMS with flexibility in scheduling operations

More flexibility means better parallelism

29

CONFLICTING OPERATIONS

We need a formal notion of equivalence that can be implemented

efficiently based on the notion of “conflicting” operations

Two operations conflict if

They are by different transactions

They are on the same object and at least one of them is a write

Interleaved execution anomalies:

Read-Write conflicts (R-W)

Write-Read conflicts (W-R)

Write-Write conflicts (W-W)

30

READ-WRITE CONFLICTS

Unrepeatable Reads

31

BEGIN
R(A)

BEGIN
R(A)
W(A)
COMMIT

R(A)

COMMIT

T1 T2

£10

£10

£19

£19

WRITE-READ CONFLICTS

Reading Uncommitted Data (“Dirty Reads”)

32

BEGIN
R(A)
W(A)

BEGIN
R(A)
W(A)
COMMIT

ABORT

T1 T2

Not recoverable

£10

£12

£12

£14

WRITE-WRITE CONFLICTS

Overwriting Uncommitted Data (”Lost Update”)

33

BEGIN
W(A)

BEGIN
W(A)
W(B)
COMMIT

W(B)

COMMIT

T1 T2

£10

£19

Michael

Alice

FORMAL PROPERTIES OF SCHEDULES

Given these conflicts, we can now understand what it means

for a schedule to be serializable

This is to check whether schedules are correct

This is not how to generate a correct schedule

There are levels of serializability

Conflict Serializability

View Serializability

34

Most DBMS try to support this

No DBMS supports this

CONFLICT SERIALIZABLE SCHEDULES

Two schedules are conflict equivalent iff

They involve the same actions of the same transactions

Every pair of conflicting actions is ordered in the same way

Schedule S is conflict serializable if S is conflict equivalent to some serial

schedule

Intuition: Schedule S is conflict serializable if you can transform S into a serial schedule by

swapping consecutive non-conflicting operations of different txns

35

CONFLICT SERIALIZABILITY: INTUITION

36

BEGIN BEGIN
R(A)
W(A)

R(A)
W(A)

R(B)
W(B)
COMMIT

R(B)
W(B)

COMMIT

T1 T2

Schedule
T

I
M

E

CONFLICT SERIALIZABILITY: INTUITION

37

BEGIN BEGIN
R(A)
W(A)

R(A)
R(B)

W(A)
W(B)
COMMIT

R(B)
W(B)

COMMIT

T1 T2

Schedule
T

I
M

E

CONFLICT SERIALIZABILITY: INTUITION

38

BEGIN BEGIN
R(A)
W(A)
R(B)

R(A)
W(A)

W(B)
COMMIT

R(B)
W(B)

COMMIT

T1 T2

Schedule
T

I
M

E

CONFLICT SERIALIZABILITY: INTUITION

39

BEGIN BEGIN
R(A)
W(A)
R(B)

R(A)
W(B)

W(A)
COMMIT

R(B)
W(B)

COMMIT

T1 T2

Schedule
T

I
M

E

CONFLICT SERIALIZABILITY: INTUITION

40

BEGIN BEGIN
R(A)
W(A)
R(B)
W(B)

R(A)
W(A)

COMMIT
R(B)
W(B)

COMMIT

T1 T2

Schedule
T

I
M

E

≡

Serial schedule

BEGIN
R(A)
W(A)
R(B)
W(B)
COMMIT BEGIN

R(A)
W(A)
R(B)
W(B)

COMMIT

T1 T2

Serializable

CONFLICT SERIALIZABILITY: INTUITION

41

BEGIN BEGIN
R(A)

R(A)
W(A)

W(A)
COMMIT COMMIT

T1 T2

Schedule
T

I
M

E

≢

Serial schedule

BEGIN
R(A)
W(A)
COMMIT BEGIN

R(A)
W(A)

COMMIT

T1 T2

Not conflict-serializable

SERIALIZABILITY

Swapping operations is easy when there are only two txns in the schedule

But it’s cumbersome when there are many txns

Are there any faster algorithms to figure this out other than transposing

operations?

42

DEPENDENCY GRAPHS

Dependency graph for a schedule

One node per transaction

Edge from Ti to Tj if:

Operation Oi of Ti conflicts with an operation Oj of Tj and

Oi appears earlier in the schedule than Oj

Also known as a conflict graph or precedence graph

Equivalent serial schedule can be obtained by sorting the graph topologically

43

Dependency Graph

Ti Tj

A schedule is conflict-serializable if and only if

its dependency graph is acyclic

EXAMPLE #1
44

BEGIN BEGIN
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)
COMMIT

R(B)
W(B)

COMMIT

T1 T2

Schedule
T

I
M

E
Dependency Graph

T1 T2

The cycle in the graph reveals

the problem. The output of T1

depends on T2, and vice versa.

EXAMPLE #2 - THREESOME

Is this equivalent to a serial schedule?

Yes, (T2, T1, T3)

Notice that T3 should go after T2 although

T3 starts before T2!

45

BEGIN
R(A)
W(A) BEGIN

R(A)
W(A)

BEGIN COMMIT
R(B)
W(B)

R(B) COMMIT
W(B)

COMMIT

T1 T2

Schedule
T

I
M

E
Dependency Graph

T1 T2
T3

T3

VIEW SERIALIZABILITY

Alternative (weaker) notion of serializability

Schedule S1 and S2 are view equivalent iff

If T1 reads initial value of A in S1, then T1 also reads initial value of A in S2

If T1 reads value of A written by T2 in S1, then T1 also reads value of A

written by T2 in S2

If T1 writes final value of A in S1, then T1 also writes final value of A in S2

48

VIEW SERIALIZABILITY

49

BEGIN
R(A) BEGIN

W(A)
BEGIN

W(A)
W(A)

COMMIT COMMIT COMMIT

T1 T2

Schedule
T

I
M

E
Dependency Graph

T3

T3

T1 T2

Not conflict serializable. But is this

equivalent to a serial schedule?

VIEW SERIALIZABILITY

50

BEGIN
R(A) BEGIN

W(A)
BEGIN

W(A)
W(A)

COMMIT COMMIT COMMIT

T1 T2

Schedule
T

I
M

E

T3

BEGIN
R(A)
W(A)
COMMIT

BEGIN
W(A)
COMMIT

BEGIN
W(A)
COMMIT

T1 T2

Serial Schedule

T3

≡
VIEW

Allows all conflict serializable

schedules + “blind writes”

SERIALIZABILITY

Conflict serializability

Can enforced efficiently

All DBMSs support it

View serializability

Admits (slightly) more schedules than CS

But it is difficult to enforce efficiently

No DBMS supports it

Neither definition allows all “serializable” schedules

They do not understand the meaning of the operations or the data

51

Serial

Conflict Serializable

All Schedules

View Serializable

ACID PROPERTIES: DURABILITY

All of the changes of committed transactions must be persistent

No torn updates

No changes from failed transactions

The DBMS uses either logging or shadow paging to ensure

that all changes are durable

More about logging in next lectures

52

SUMMARY

ACID Transactions

Atomicity: All or nothing

Consistency: Only valid data

Isolation: No interference

Durability: Committed data persists

Concurrency control and recovery are among the most important functions

provided by a DBMS

53

Serializability

Serializable schedules

Conflict & view serializability

Checking for conflict serializability

	Slide 1
	Slide 2: Architecture of a DBMS
	Slide 3: Motivation
	Slide 4: Transactions
	Slide 5: User Perspective: Transactions
	Slide 6: Transaction Example
	Slide 7: Transaction Example
	Slide 8: Database Perspective
	Slide 9: Transactions: Formal Definition
	Slide 10: Strawman Execution
	Slide 11: Concurrent Execution
	Slide 12: Transaction Guarantees: ACID
	Slide 13: ACID Properties: Atomicity
	Slide 14: Mechanisms for Ensuring Atomicity
	Slide 15: ACID Properties: Consistency
	Slide 16: ACID Properties: Isolation
	Slide 17: Mechanisms for Ensuring Isolation
	Slide 18: Example
	Slide 20: Example
	Slide 22: Example: Serial Execution
	Slide 24: Example: Interleaving (Good)
	Slide 25: Example: Interleaving (Bad)
	Slide 26: Example: Interleaving (Bad)
	Slide 27: Correctness
	Slide 28: Formal Properties of Schedules
	Slide 29: Formal Properties of Schedules
	Slide 30: Conflicting Operations
	Slide 31: Read-Write Conflicts
	Slide 32: Write-Read Conflicts
	Slide 33: Write-Write Conflicts
	Slide 34: Formal Properties of Schedules
	Slide 35: Conflict Serializable Schedules
	Slide 36: Conflict Serializability: Intuition
	Slide 37: Conflict Serializability: Intuition
	Slide 38: Conflict Serializability: Intuition
	Slide 39: Conflict Serializability: Intuition
	Slide 40: Conflict Serializability: Intuition
	Slide 41: Conflict Serializability: Intuition
	Slide 42: Serializability
	Slide 43: Dependency Graphs
	Slide 44: Example #1
	Slide 45: Example #2 - Threesome
	Slide 48: View Serializability
	Slide 49: View Serializability
	Slide 50: View Serializability
	Slide 51: Serializability
	Slide 52: ACID Properties: Durability
	Slide 53: Summary

