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ARCHITECTURE OF A DBMS

Up until now we have assumed a 

single-user architecture and failure-

free execution
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Disk Space Management

Buffer  Management

Files & Index Management

Operator  Execution

Query Planning

Database

SQL Client 

Recovery

Concurrency Control



MOTIVATION

We both change the same record in 

a table at the same time.

How to avoid race condition?

You transfer £100 between bank accounts 

but there is a power failure.

What is the correct database state?
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Both concurrency control and recovery are based 

on a concept of transactions with ACID properties

Concurrency Control

Recovery



TRANSACTIONS

A transaction is the execution of a 

sequence of operations (e.g., SQL 

queries) on a shared database to 

perform some higher-level function

Basic unit of change in a DBMS

Partial transactions are not allowed!
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BEGIN XACT

SELECT

INSERT

DELETE

COMMIT

Transaction 1

BEGIN XACT

INSERT

DELETE

ROLLBACK

Transaction 2

BEGIN XACT

DELETE

DELETE

COMMIT

Transaction 3



USER PERSPECTIVE: TRANSACTIONS

Transaction (abbr. txn) = group of operations the user wants 

the DBMS to treat “as one”

A new transaction starts with the BEGIN command

The transaction stops with either COMMIT or ABORT (ROLLBACK)

If commits, all changes are saved

If aborts, all changes are undone (as if the txn never executed at all)

Abort can be either self-inflicted or caused by DBMS
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TRANSACTION EXAMPLE

Transfer £100 from Checking to Savings account of user 1904
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BEGIN

// check if Checking balance > 100

UPDATE Accounts
SET balance = balance – 100

WHERE customer_id = 1904
AND account_type = ‘Checking’;

UPDATE Accounts
SET balance = balance + 100

WHERE customer_id = 1904
AND account_type = ‘Savings’;

COMMIT

Temporary inconsistent DB

Consistent DB

Consistent DB



TRANSACTION EXAMPLE

Transfer £100 from Checking to Savings account of user 1904
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BEGIN

// check if Checking balance > 100

UPDATE Accounts
SET balance = balance – 100

WHERE customer_id = 1904
AND account_type = ‘Checking’;

UPDATE Accounts
SET balance = balance + 100

WHERE customer_id = 1904
AND account_type = ‘Savings’;

COMMIT

How to check if balance > 100?

Outside DBMS using another language

E.g., in Java or PHP code

Inside DBMS using stored procedures 

expressed in PL/SQL or T-SQL

PL/SQL = SQL + procedural constructs such as 

if-then-else, loops, variables, functions…



DATABASE PERSPECTIVE

A transaction may carry out many operations on the data 

retrieved from the database 

However, the DBMS is only concerned about what data is 

read/written from/to the database

Changes to the “outside world” are beyond scope of the DBMS
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TRANSACTIONS: FORMAL DEFINITION

Database = fixed set of named data objects (A, B, C, …)

Transactions access object A using read A and write A, for short R(A) and W(A)

In a relational DBMS, an object can be an attribute, record, page, or table

Transaction = sequence of read and write operations 

T = ⟨ R(A), W(A), W(B), … ⟩

DBMS’s abstract view of a user program
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STRAWMAN EXECUTION

Execute each txn one-by-one (serial order) as they arrive in the DBMS

One and only one txn can be running at the same time in the DBMS

Before a txn starts, copy the entire database to a new file and make all 

changes to that file

If the txn completes successfully, overwrite the original file with the new one

If the txn fails, just remove the dirty copy

SQLite executes transactions in serial order
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CONCURRENT EXECUTION

A  better approach is to allow concurrent execution of independent transactions

Why do we want that?

Better resource utilization and throughput (txns/sec)

Use the CPU while another txn is waiting for the disk

Multicore: Ideally, scale throughput in the # of CPUs

Decreased response times to users

One txn’s latency need not be dependent on another unrelated txn

Or that’s the hope

But we also would like correctness and fairness

11

3

2

1

3

2

1

3

2

1

Txn 1 Txn 2 Txn 3

S C H E D U L E R

1

2

1

1

E X E C U T O R



TRANSACTION GUARANTEES: ACID

Atomicity: All actions in the txn happen, or none happen

Consistency: If each txn is consistent and the DB starts

consistent, then it ends up consistent

Isolation: Execution of one txn is isolated from that of other txns

Durability: If a txn commits, its effects persist
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“all or nothing”

“it looks correct to me”

“as if alone”

“survive failures”



ACID PROPERTIES: ATOMICITY

Two possible outcomes of executing a transaction:

Commit after completing all actions

Abort (or be aborted by the DBMS) after executing some actions

The DBMS guarantees that transactions are atomic

From user’s point of view: 

A transaction always either executes all its actions or executes no actions at all

Example:

Take £100 from account A, but then a power failure happens before crediting account B

When the DBMS comes back online, what should be the correct state of the database?
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MECHANISMS FOR ENSURING ATOMICITY 

Approach #1: Logging

DBMS logs all actions so that it can undo the actions of aborted transactions

Write-ahead logging is used by almost all modern database systems

Efficiency reasons: random writes turned into sequential writes through a log

Audit trail: everything done by the app is recorded

Approach #2: Shadow Paging (copy-on-write)

DBMS makes copies of pages and transactions make changes to those copies

Only when the transaction commits is the page made visible to others

Few database systems do this (CouchDB, LMDB)
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ACID PROPERTIES: CONSISTENCY

Database consistency

The database accurately models the real world and follows integrity constraints

Transactions in the future see the effects of transactions committed in the past

Transaction consistency

If the database is consistent before the txn starts (running alone), it will be also consistent after

Transaction consistency is the application’s responsibility!
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ACID PROPERTIES: ISOLATION

Users submit transactions, and each transaction executes as 

if it was running alone

The DBMS achieves concurrency by interleaving actions 

(read/writes of database objects) of various transactions

How do we achieve this?
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MECHANISMS FOR ENSURING ISOLATION

A concurrency control protocol is how the DBMS decides the proper 

interleaving of operations from multiple transactions

Two main categories:

Pessimistic: Don’t let problems arise in the first place

Optimistic: Assume conflicts are rare, deal with them after they happen
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EXAMPLE

Assume at first accounts A and B each have £1000

T1 transfers £100 from A to B

T2 credits both accounts with 6% interest
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BEGIN
A = A - 100
B = B + 100
END

BEGIN
A = A * 1.06
B = B * 1.06
END

T1 T2



EXAMPLE

Assume at first accounts A and B each have £1000

What are the possible outcomes of running T1 and T2?

Many! But A+B should be 2000 * 1.06 = 2120

There is no guarantee that T1 will execute before T2 or vice versa, 

if both are submitted together

But the net effect must be equivalent to these two transactions running 

serially in some order
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EXAMPLE: SERIAL EXECUTION
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BEGIN
A = A - 100
B = B + 100
COMMIT

BEGIN
A = A * 1.06
B = B * 1.06

COMMIT

T1 T2

Schedule
T

I
M

E

≡

Schedule

BEGIN
A = A * 1.06
B = B * 1.06
COMMIT

BEGIN
A = A - 100
B = B + 100

COMMIT

T1 T2

A = 954, B = 1166 A = 960, B = 1160

A+B = 2120



EXAMPLE: INTERLEAVING (GOOD)
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BEGIN
A = A - 100

BEGIN
A = A * 1.06

B = B + 100
COMMIT

B = B * 1.06

COMMIT

T1 T2

A = 954, B = 1166

Schedule
T

I
M

E

≡

Schedule

BEGIN
A = A - 100
B = B + 100
COMMIT

BEGIN
A = A * 1.06
B = B * 1.06

COMMIT

T1 T2

A = 954, B = 1166



≢

EXAMPLE: INTERLEAVING (BAD)
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BEGIN
A = A - 100

BEGIN
A = A * 1.06
B = B * 1.06
COMMIT

B = B + 100

COMMIT

T1 T2

A = 954, B = 1160

Schedule
T

I
M

E

The bank is missing £6!

A = 954, B = 1166

or

A = 960, B = 1160

A+B = 2114



EXAMPLE: INTERLEAVING (BAD)
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BEGIN
A = A - 100

BEGIN
A = A * 1.06
B = B * 1.06
COMMIT

B = B + 100

COMMIT

T1 T2

A = 954, B = 1160

Schedule
T

I
M

E
DBMS View

BEGIN
R(A)
W(A)

BEGIN
R(A)
W(A)
R(B)
W(B)
COMMIT

R(B)
W(B)

COMMIT

T1 T2

A+B = 2114



CORRECTNESS

How do we judge whether a schedule is correct?

If the schedule is equivalent to some serial execution
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Schedule S for a set of transactions { T1, … , Tn }

S contains all steps of all transactions and order among steps in each Ti is preserved

S = ⟨ (T1, read B), (T2, read A), (T2, write B), (T1, write A) ⟩

for short, S = ⟨ R1(B), R2(A), W2(B), W1(A) ⟩



FORMAL PROPERTIES OF SCHEDULES

Equivalent schedules

For any database state, the effect of executing the first schedule is identical 

to the effect of executing the second schedule

Does not matter what the higher-level operations are!

Serial schedule (no concurrency)

A schedule that does not interleave the actions of different transactions
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T I M E

321321 321

Txn 1Txn 2 Txn 3



FORMAL PROPERTIES OF SCHEDULES

Serializable schedule

A schedule that is equivalent to some serial execution of the transactions

If each transaction preserves consistency, every serializable 

schedule preserves consistency

Serializability 

Less intuitive notion of correctness compared to transaction initiation time 

or commit order

But it provides the DBMS with flexibility in scheduling operations

More flexibility means better parallelism
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CONFLICTING OPERATIONS

We need a formal notion of equivalence that can be implemented 

efficiently based on the notion of “conflicting” operations

Two operations conflict if

They are by different transactions

They are on the same object and at least one of them is a write

Interleaved execution anomalies:

Read-Write conflicts (R-W)

Write-Read conflicts (W-R)

Write-Write conflicts (W-W)
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READ-WRITE CONFLICTS

Unrepeatable Reads
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BEGIN
R(A)

BEGIN
R(A)
W(A)
COMMIT

R(A)

COMMIT

T1 T2

£10

£10

£19

£19



WRITE-READ CONFLICTS

Reading Uncommitted Data (“Dirty Reads”)

32

BEGIN
R(A)
W(A)

BEGIN
R(A)
W(A)
COMMIT

ABORT

T1 T2

Not recoverable

£10

£12

£12

£14



WRITE-WRITE CONFLICTS

Overwriting Uncommitted Data (”Lost Update”)
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BEGIN
W(A)

BEGIN
W(A)
W(B)
COMMIT

W(B)

COMMIT

T1 T2

£10

£19

Michael

Alice



FORMAL PROPERTIES OF SCHEDULES

Given these conflicts, we can now understand what it means 

for a schedule to be serializable

This is to check whether schedules are correct

This is not how to generate a correct schedule

There are levels of serializability

Conflict Serializability

View Serializability
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Most DBMS try to support this

No DBMS supports this



CONFLICT SERIALIZABLE SCHEDULES

Two schedules are conflict equivalent iff

They involve the same actions of the same transactions

Every pair of conflicting actions is ordered in the same way

Schedule S is conflict serializable if S is conflict equivalent to some serial 

schedule

Intuition: Schedule S is conflict serializable if you can transform S into a serial schedule by 

swapping consecutive non-conflicting operations of different txns
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CONFLICT SERIALIZABILITY: INTUITION
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BEGIN BEGIN
R(A)
W(A)

R(A)
W(A)

R(B)
W(B)
COMMIT

R(B)
W(B)

COMMIT

T1 T2

Schedule
T

I
M

E



CONFLICT SERIALIZABILITY: INTUITION
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BEGIN BEGIN
R(A)
W(A)

R(A)
R(B)

W(A)
W(B)
COMMIT

R(B)
W(B)

COMMIT

T1 T2

Schedule
T

I
M
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CONFLICT SERIALIZABILITY: INTUITION
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BEGIN BEGIN
R(A)
W(A)
R(B)

R(A)
W(A)

W(B)
COMMIT

R(B)
W(B)

COMMIT

T1 T2

Schedule
T

I
M
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CONFLICT SERIALIZABILITY: INTUITION
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BEGIN BEGIN
R(A)
W(A)
R(B)

R(A)
W(B)

W(A)
COMMIT

R(B)
W(B)

COMMIT

T1 T2

Schedule
T

I
M

E



CONFLICT SERIALIZABILITY: INTUITION
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BEGIN BEGIN
R(A)
W(A)
R(B)
W(B)

R(A)
W(A)

COMMIT
R(B)
W(B)

COMMIT

T1 T2

Schedule
T

I
M

E

≡

Serial schedule

BEGIN
R(A)
W(A)
R(B)
W(B)
COMMIT BEGIN

R(A)
W(A)
R(B)
W(B)

COMMIT

T1 T2

Serializable



CONFLICT SERIALIZABILITY: INTUITION
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BEGIN BEGIN
R(A)

R(A)
W(A)

W(A)
COMMIT COMMIT

T1 T2

Schedule
T

I
M

E

≢

Serial schedule

BEGIN
R(A)
W(A)
COMMIT BEGIN

R(A)
W(A)

COMMIT

T1 T2

Not conflict-serializable



SERIALIZABILITY

Swapping operations is easy when there are only two txns in the schedule

But it’s cumbersome when there are many txns

Are there any faster algorithms to figure this out other than transposing 

operations?
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DEPENDENCY GRAPHS

Dependency graph for a schedule

One node per transaction

Edge from Ti to Tj if:

Operation Oi of Ti conflicts with an operation Oj of Tj and

Oi appears earlier in the schedule than Oj

Also known as a conflict graph or precedence graph

Equivalent serial schedule can be obtained by sorting the graph topologically
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Dependency Graph

Ti Tj

A schedule is conflict-serializable if and only if 

its dependency graph is acyclic



EXAMPLE #1
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BEGIN BEGIN
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)
COMMIT

R(B)
W(B)

COMMIT

T1 T2

Schedule
T

I
M

E
Dependency Graph

T1 T2

The cycle in the graph reveals 

the problem. The output of T1 

depends on T2, and vice versa.



EXAMPLE #2 - THREESOME

Is this equivalent to a serial schedule?

Yes, (T2, T1, T3)

Notice that T3 should go after T2 although 

T3 starts before T2!
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BEGIN
R(A)
W(A) BEGIN

R(A)
W(A)

BEGIN COMMIT
R(B)
W(B)

R(B) COMMIT
W(B)

COMMIT

T1 T2

Schedule
T

I
M

E
Dependency Graph

T1 T2
T3

T3



VIEW SERIALIZABILITY

Alternative (weaker) notion of serializability

Schedule S1 and S2 are view equivalent iff

If T1 reads initial value of A in S1, then T1 also reads initial value of A in S2

If T1 reads value of A written by T2 in S1, then T1 also reads value of A 

written by T2 in S2

If T1 writes final value of A in S1, then T1 also writes final value of A in S2
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VIEW SERIALIZABILITY
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BEGIN
R(A) BEGIN

W(A)
BEGIN

W(A)
W(A)

COMMIT COMMIT COMMIT

T1 T2

Schedule
T

I
M

E
Dependency Graph

T3

T3

T1 T2

Not conflict serializable. But is this 

equivalent to a serial schedule?



VIEW SERIALIZABILITY
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BEGIN
R(A) BEGIN

W(A)
BEGIN

W(A)
W(A)

COMMIT COMMIT COMMIT

T1 T2

Schedule
T

I
M

E

T3

BEGIN
R(A)
W(A)
COMMIT

BEGIN
W(A)
COMMIT

BEGIN
W(A)
COMMIT

T1 T2

Serial Schedule

T3

≡
VIEW

Allows all conflict serializable 

schedules + “blind writes”



SERIALIZABILITY

Conflict serializability

Can enforced efficiently

All DBMSs support it

View serializability 

Admits (slightly) more schedules than CS

But it is difficult to enforce efficiently

No DBMS supports it

Neither definition allows all “serializable” schedules

They do not understand the meaning of the operations or the data
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Serial

Conflict Serializable

All Schedules

View Serializable



ACID PROPERTIES: DURABILITY

All of the changes of committed transactions must be persistent

No torn updates

No changes from failed transactions

The DBMS uses either logging or shadow paging to ensure 

that all changes are durable

More about logging in next lectures
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SUMMARY

ACID Transactions

Atomicity: All or nothing 

Consistency: Only valid data 

Isolation: No interference

Durability: Committed data persists

Concurrency control and recovery are among the most important functions 

provided by a DBMS

53

Serializability

Serializable schedules

Conflict & view serializability

Checking for conflict serializability
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