
Advanced Database Systems
Spring 2025

Lecture #19:

Locking

R&G: Chapters 16 & 17

QUERY SCHEDULER

How to guarantee only serializable schedules in DBMS?

Problem: user does not need to specify the full transaction at once

Goal: build a query scheduler that always emits serializable schedules

Pessimistic (locking)

Use locks to protect database objects

Standard approach if conflicts are frequent

Optimistic (versioning)

Record changes for each txn individually

Validate and possibly rollback on commit

Used if conflicts are rare (e.g., write-once-read-many scenarios)

2

3

2

1

3

2

1

3

2

1

Txn 1 Txn 2 Txn 3

S C H E D U L E R

1

2

1

1

E X E C U T O R

EXECUTING WITH LOCKS

3

BEGIN
LOCK(A)
R(A) BEGIN

LOCK(A)
W(A)
R(A)
UNLOCK(A)

R(A)
W(A)

COMMIT UNLOCK(A)

COMMIT

T1 T2

Schedule
T

I
M

E
Lock Manager

Granted (T1 → A)

Denied!

Released (T1 → A)

Granted (T2 → A)

Released (T2 → A)

EXECUTING WITH LOCKS

Basic lock types:

S-LOCK: Shared locks for reads

X-LOCK: Exclusive locks for writes

Steps:

Transactions request locks (or upgrades) before accessing objects

Lock manager grants or blocks requests

Transactions release locks

Lock manager updates its internal lock-table

4

Shared Exclusive

Shared ✓ ⨉

Exclusive ⨉ ⨉

Compatibility Matrix

EXECUTING WITH LOCKS

5

BEGIN
X-LOCK(A)
R(A)
W(A)
UNLOCK(A)

BEGIN
X-LOCK(A)
W(A)
UNLOCK(A)

S-LOCK(A)
R(A)
UNLOCK(A)

COMMIT COMMIT

T1 T2

Schedule

T
I

M
E

Lock Manager

Granted (T1 → A)

Released (T1 → A)

Granted (T2 → A)

Released (T2 → A)

Granted (T1 → A)

Released (T1 → A)

EXECUTING WITH LOCKS

6

BEGIN
X-LOCK(A)
R(A)
W(A)
UNLOCK(A)

BEGIN
X-LOCK(A)
W(A)
UNLOCK(A)

S-LOCK(A)
R(A)
UNLOCK(A)

COMMIT COMMIT

T1 T2

Schedule

T
I

M
E

Lock Manager

Granted (T1 → A)

Released (T1 → A)

Granted (T2 → A)

Released (T2 → A)

Granted (T1 → A)

Released (T1 → A)

Not serializable
Locking alone does not enforce

serializable schedules

TWO-PHASE LOCKING

Locks + concurrency control protocol

Determines if a txn is allowed to access an object in the database on the fly

Does not need to know all of the queries that a txn will execute ahead of time

Phase 1: Growing

Each txn requests the locks that it needs from the lock manager

The lock manager grants/denies lock requests

Phase 2: Shrinking

The txn is allowed to only release locks that it previously acquired

It cannot acquire new locks

7

TWO-PHASE LOCKING

The transaction is not allowed to acquire/upgrade locks after

the growing phase finishes

8

#
 o

f
L

o
ck

s

Transaction Lifetime

Growing Phase Shrinking Phase

T I M E

TWO-PHASE LOCKING

The transaction is not allowed to acquire/upgrade locks after

the growing phase finishes

9

#
 o

f
L

o
ck

s

Transaction Lifetime

Growing Phase Shrinking Phase

T I M E

2PL Violation!

EXECUTING WITH LOCKS

10

BEGIN
X-LOCK(A)
R(A)
W(A) BEGIN

X-LOCK(A)

R(A)

UNLOCK(A)

COMMIT
W(A)
UNLOCK(A)
COMMIT

T1 T2

Schedule

T
I

M
E

Lock Manager

Granted (T1 → A)

Denied!

Released (T1 → A)

Granted (T2 → A)

Released (T2 → A)

2PL is sufficient to guarantee conflict-serializability
(generates schedules whose precedence graph is acyclic)

2PL – CASCADING ABORTS

2PL is subject to cascading aborts

This is a permissible schedule in 2PL

but the DBMS has to also abort T2

when T1 aborts

Any information about T1 cannot be

”leaked” to the outside world

11

BEGIN BEGIN
X-LOCK(A)
X-LOCK(B)
R(A)
W(A)
UNLOCK(A)

X-LOCK(A)
R(A)
W(A)
⋮

R(B)
W(B)

ABORT

T1 T2

Schedule
T

I
M

E

This is all wasted work!

2PL OBSERVATIONS

There are schedules that are serializable but not be allowed by 2PL

Locking limits concurrency

May require cascading aborts

Solution: Strict 2PL

May still have ”dirty reads”

Solution: Strict 2PL

May lead to deadlocks

Solution: Detection or Prevention

12

STRICT TWO-PHASE LOCKING

The txn is not allowed to acquire/upgrade locks after the growing phase finishes

Allows only conflict-serializable schedules, but it is often stronger than needed

for some applications

13

#
 o

f
L

o
ck

s

Transaction Lifetime

Growing Phase Shrinking Phase

Release all locks
at end of txn

T I M E

STRICT TWO-PHASE LOCKING

Advantages:

Does not incur cascading aborts

Aborted txns can be undone by just restoring original values of modified tuples

14

#
 o

f
L

o
ck

s

Transaction Lifetime

Growing Phase Shrinking Phase

T I M E

Release all locks
at end of txn

NON-2PL EXAMPLE

T1 – move £100 from account A to account B

T2 – compute the total amount in all accounts and

return it to the application

15

BEGIN BEGIN
X-LOCK(A)
R(A)

S-LOCK(A)
A = A - 100
W(A)
UNLOCK(A)

R(A)
UNLOCK(A)
S-LOCK(B)

X-LOCK(B)
R(B)
UNLOCK(B)

R(B) ECHO A + B
B = B + 100 COMMIT
W(B)
UNLOCK(B)
COMMIT

T1 T2

Schedule

T
I

M
E

Initial Database State

T2 Output

A = 1000, B = 1000

A + B = 1900

2PL EXAMPLE

T1 – move £100 from account A to account B

T2 – compute the total amount in all accounts and

return it to the application

16

BEGIN BEGIN
X-LOCK(A)
R(A)

S-LOCK(A)
A = A - 100
W(A)
X-LOCK(B)
UNLOCK(A) R(A)

S-LOCK(B)

R(B)
B = B + 100
W(B)
UNLOCK(B) R(B)
COMMIT UNLOCK(A)

UNLOCK(B)
ECHO A + B
COMMIT

T1 T2

Schedule

T
I

M
E

Initial Database State

T2 Output

A = 1000, B = 1000

A + B = 2000

STRICT 2PL EXAMPLE

T1 – move £100 from account A to account B

T2 – compute the total amount in all accounts and

return it to the application

17

BEGIN BEGIN
X-LOCK(A)
R(A)

S-LOCK(A)
A = A - 100
W(A)
X-LOCK(B)
R(B)
B = B + 100
W(B)
UNLOCK(A) R(A)
UNLOCK(B) S-LOCK(B)
COMMIT R(B)

ECHO A + B
UNLOCK(A)
UNLOCK(B)
COMMIT

T1 T2

Schedule

T
I

M
E

Initial Database State

T2 Output

A = 1000, B = 1000

A + B = 2000

SCHEDULING: DEADLOCKS

Two-phase locking has the risk of deadlock situations

18

BEGIN BEGIN
X-LOCK(A)

S-LOCK(B)
R(B)
S-LOCK(A)

R(A)
X-LOCK(B)

T1 T2

Schedule

T
I

M
E

Lock Manager

Granted (T1 → A)

Denied!

Granted (T2 → B)

Denied!

2PL DEADLOCKS

Deadlock = a cycle of txns waiting for locks to be released by each other

Two ways of dealing with deadlocks:

Deadlock Detection

Deadlock Prevention

Conservative (or “preclaiming”) 2PL also prevents deadlocks. Why?

19

#
 o

f
L

o
ck

s

Growing Phase Shrinking Phase

DEADLOCK DETECTION

The DBMS creates a waits-for graph to keep track of what locks

each transaction is waiting to acquire:

Nodes are transactions

Edge from Ti to Tj if Ti is waiting for Tj to release a lock

The system periodically checks for cycles in waits-for graph and

then make a decision on how to break it

20

DEADLOCK DETECTION

21

BEGIN BEGIN BEGIN
S-LOCK(A)

X-LOCK(B)
S-LOCK(C)

S-LOCK(B)
X-LOCK(C)

X-LOCK(A)

T1 T2

Schedule

T
I

M
E

Waits-For Graph

T1 T2
T3

T3

DEADLOCK HANDLING

Upon detecting a deadlock, the DBMS selects a “victim” transaction to

rollback to break the cycle

Selecting a “victim” transaction might depend on:

age (lowest timestamp)

progress (least/most executed queries)

of items already locked

of txns that we have to rollback with it

of previous restarts (to prevent starvation)

There is a trade-off between the frequency of checking for deadlocks and

how long transactions have to wait before deadlocks are broken

22

DEADLOCK PREVENTION

When a transaction tries to acquire a lock that is held by another transaction,

kill one of them to prevent a deadlock

No waits-for graph or detection algorithm

Assign priorities based on timestamps

Older ⇒ higher priority (e.g., T1 > T2)

Two deadlock prevention policies:

Wait-Die (“Old Waits for Young”)

Wound-Wait (“Young Waits for Old”)

23

DEADLOCK PREVENTION

Wait-Die (“Old Waits for Young”)

If requesting txn has higher priority than holding txn

Then requesting txn waits for holding txn

Else requesting txn aborts

Wound-Wait (“Young Waits for Old”)

If requesting txn has higher priority than holding txn

Then holding txn aborts and releases locks

Else requesting txn waits

24

DEADLOCK PREVENTION

25

Treq > Thold ? :

Wait Die

Wound Wait

Treq > Thold ? :

DEADLOCK PREVENTION

26

BEGIN
BEGIN
X-LOCK(A)

X-LOCK(A) ⋮

⋮

T1 T2

BEGIN
X-LOCK(A)
⋮ BEGIN

X-LOCK(A)

⋮

T1 T2

Wait-Die

T1 waits

Wound-Wait

T2 aborts

Wait-Die

T2 aborts

Wound-Wait

T2 waits

DEADLOCK PREVENTION

Why do these schemes guarantee no deadlocks?

Only one “type” of direction allowed when waiting for a lock

When a transaction restarts, what is its (new) priority?

Its original timestamp. Why?

27

SUMMARY

ACID Transactions

Atomicity: All or nothing

Consistency: Only valid data

Isolation: No interference

Durability: Committed data persists

Concurrency Control

Prevent anomalous schedules

Locks + protocol (2PL, Strict 2PL) guarantees conflict serializability

Deadlock detection and deadlock prevention

28

Serializability

Serializable schedules

Conflict & view serializability

Checking for conflict serializability

	Slide 1
	Slide 2: Query Scheduler
	Slide 3: Executing with Locks
	Slide 4: Executing with Locks
	Slide 5: Executing with Locks
	Slide 6: Executing with Locks
	Slide 7: Two-Phase Locking
	Slide 8: Two-Phase Locking
	Slide 9: Two-Phase Locking
	Slide 10: Executing with Locks
	Slide 11: 2PL – Cascading Aborts
	Slide 12: 2PL Observations
	Slide 13: Strict Two-Phase Locking
	Slide 14: Strict Two-Phase Locking
	Slide 15: Non-2PL Example
	Slide 16: 2PL Example
	Slide 17: Strict 2PL Example
	Slide 18: Scheduling: Deadlocks
	Slide 19: 2PL Deadlocks
	Slide 20: Deadlock Detection
	Slide 21: Deadlock Detection
	Slide 22: Deadlock Handling
	Slide 23: Deadlock Prevention
	Slide 24: Deadlock Prevention
	Slide 25: Deadlock Prevention
	Slide 26: Deadlock Prevention
	Slide 27: Deadlock Prevention
	Slide 28: Summary

