
Advanced Databases
Spring 2025

Lecture #23:

Storage Models & Compression

Milos Nikolic

DATABASE WORKLOADS

On-Line Transactional Processing (OLTP)

Fast, simple operations that handle small amounts of data per transaction

On-Line Analytical Processing (OLAP)

Complex queries that read large amounts of data to compute aggregates

Hybrid Transactional and Analytical Processing (HTAP)

Combines OLTP and OLAP on the same database instance

Real-time analytics on live operational data w/o moving data between systems

(e.g., real-time fraud detection)

2

OLTP: ON-LINE TRANSACTIONAL PROCESSING

High volumes of real-time transactions

Simple queries that read/update a small

amount of data related to a single entity

Focused on operational tasks

E.g., order processing, payments, inventory

Key features

Short queries

High concurrency

Balanced read-write operations

3

SELECT P.*, R.*

 FROM pages AS P
 INNER JOIN revision AS R
 ON P.latest = R.revID
 WHERE P.pageID = ?

UPDATE useracct

 SET lastLogin = NOW(),
 hostname = ?
 WHERE userID = ?

INSERT INTO revisions

VALUES (?,?,?)

OLAP: ON-LINE ANALYTICAL PROCESSING

Designed for data analysis and reporting

Complex queries that read large portions of

the database spanning multiple entities

Get business insights from historical data

E.g., trend analysis, decision-making insights

OLAP runs on data collected from OLTP apps

Key features

Long-running queries over many tables

Read-heavy

Aggregated data

4

SELECT COUNT(U.lastLogin),

 EXTRACT(MONTH FROM
 U.lastLogin) AS month
 FROM useracct AS U
 WHERE U.hostname LIKE ‘%.gov’
 GROUP BY EXTRACT(

 MONTH FROM U.lastLogin)

OBSERVATION

The relational model does not require the DMBS to store all

tuple attributes in a single page

This may not actually be the best layout for some workloads

The DBMS can store records in different ways that are better

for either OLTP or OLAP workloads

5

STORAGE MODELS

Storage model specifies how tuples are physically arranged on disk

and in memory

Can have different performance characteristics based on the target workload

(OLTP vs. OLAP)

Influences the design choices of the rest of the DBMS

Common models

Row Storage Model

Column Storage Model

Hybrid Storage Model (PAX)

6

ROW STORAGE MODEL

Stores all attributes of a tuple (row) contiguously in memory and on disk

Ideal for OLTP workloads with frequent individual entity access and updates

7

Header userID userName userPass hostname lastLogin

Header userID userName userPass hostname lastLogin

Header userID userName userPass hostname lastLogin

Header userID userName userPass hostname lastLogin

Record #1

Record #2
.
.
.

ROW STORAGE MODEL

8

Header userID userName userPass hostname lastLogin

Header userID userName userPass hostname lastLogin

Header userID userName userPass hostname lastLogin

Header userID userName userPass hostname lastLogin

Row-Store Disk Page

Stores all attributes of a tuple (row) contiguously in memory and on disk

Fixed-length and variable-length attributes stored contiguously in a single slotted page

Record ID = (page ID, slot ID) is how the DBMS uniquely identifies a physical tuple

ROW STORAGE MODEL

9

Header userID userName userPass hostname lastLogin

Header userID userName userPass hostname lastLogin

Header userID userName userPass hostname lastLogin

Header userID userName userPass hostname lastLogin

Row-Store Disk Page

SELECT * FROM useracct

 WHERE userName = ?
 AND userPass = ? Index

Touches small amounts of data

ROW STORAGE MODEL

10

SELECT COUNT(U.lastLogin),

 EXTRACT(MONTH FROM U.lastLogin) AS month
 FROM useracct AS U
 WHERE U.hostname LIKE ‘%.gov’
 GROUP BY EXTRACT(MONTH FROM U.lastLogin)

Header userID userName userPass hostname lastLogin

Header userID userName userPass hostname lastLogin

Header userID userName userPass hostname lastLogin

Header userID userName userPass hostname lastLogin

Row-Store Disk Page

Scans entire relation

Most read data not needed

Useless Data

ROW STORAGE MODEL

Advantages

Fast access to all attributes of a single tuple. Fast inserts, updates, and deletes

Ideal for OLTP workloads involving individual tuple operations

Can use clustered indices in variant A for storing data

Disadvantages

Reading entire rows for queries involving only a few attributes leads to unnecessary I/O

Not good for reading large portions of the table and/or a subset of the attributes (OLAP)

Terrible memory locality in access patterns

Not ideal for compression because of multiple value domains within a single page

11

COLUMNAR STORAGE MODEL

Store a single attribute for all tuples contiguously in memory and on disk

Ideal for OLAP workloads where read-only queries perform large scans

over a subset of the table’s attributes

DMBS is responsible for combining/splitting a tuple’s attributes when

reading/writing

12

COLUMNAR STORAGE MODEL

Store a single attribute for all tuples contiguously in memory and on disk

Store attribute and metadata (e.g., nulls) in separate arrays of fixed-length values

Identify physical tuples using offsets into these arrays

Convert variable-length data into fixed-length values using dictionary compression

13

Header userID userName userPass hostname lastLogin

Header userID userName userPass hostname lastLogin

Header userID userName userPass hostname lastLogin

Header userID userName userPass hostname lastLogin

COLUMNAR STORAGE MODEL

Store a single attribute for all tuples contiguously in memory and on disk

14

Header hostname hostname hostname hostname

hostname hostname hostname hostname hostname

hostname hostname hostname hostname hostname

hostname hostname hostname hostname hostname

Column-Store Disk Page
userId

lastLogin

COLUMNAR STORAGE MODEL

15

Header hostname hostname hostname hostname

hostname hostname hostname hostname hostname

hostname hostname hostname hostname hostname

hostname hostname hostname hostname hostname

Column-Store Disk Page

SELECT COUNT(U.lastLogin),

 EXTRACT(month FROM U.lastLogin) AS month
 FROM useracct AS U
 WHERE U.hostname LIKE ‘%.gov’
 GROUP BY EXTRACT(month FROM U.lastLogin)

COLUMNAR STORAGE MODEL

Advantages

Reduces the amount of wasted I/O because the DBMS only

reads the data that it needs (free projection pushdown)

Faster query processing because of increased cache locality

Better data compression

Disadvantages

Slow for point queries, inserts, updates, and deletes

because of tuple splitting / stitching

17

HYBRID STORAGE MODEL (PAX)

OLAP queries rarely access a single column in isolation

During query execution, the DBMS must get other columns and reconstruct the original tuple

Ideally, we want columnar benefits (compression, efficient processing)

without losing the speed of accessing related data together

Partition Attributes Across (PAX) is a hybrid storage model that

vertically partitions attributes within a database page

Examples: Parquet, ORC, and Arrow

The goal is to combine the performance benefits of columnar storage with

the spatial locality advantages of row storage

18

HYBRID STORAGE MODEL

Horizontally partition data into row groups

Vertically partition row groups into column chunks

Global metadata directory contains

offsets to the file’s row groups

This is stored in the footer if the file is

immutable (Parquet, Orc)

Each row group contains its own

metadata header about its contents

19

Col A Col B Col C

a0 b0 c0

a1 b1 c1

a2 b2 c2

a3 b3 c3

a4 b4 c4

a5 b5 c5

Row 1

Row 2

Row 3

Row 4

Row 5

Row 0

Row Group 0

File metadata

Row group metadata

PAX File

a0 a1 a2

Col B chunk

b0 b1 b2

Col A chunk Col C chunk

c0 c1 c2

Row Group 1 Row group metadata

a3 a4 a5

Col B chunk

b3 b4 b5

Col A chunk Col C chunk

c3 c4 c5

PARQUET FILE FORMAT

Data organisation

Row groups (default 128MB)

Column chunks

Pages (default 1MB)

 Metadata (min, max, count)

 Rep/def levels (for nested data)

 Encoded values

Footer

 File, row group, and column metadata

 (e.g., schema, count, row group offsets)

20

Parquet file Column X chunk

Row group 0

Row group N

Footer

⠇

Column A chunk

⠇

⠇

Column B chunk

Column X chunk

Column Z chunk

Page 0

Page metadata

Repetition levels

Definition levels

Encoded values

Page 1

Page M

⠇

PARQUET FILE FORMAT

Columnar storage speeds up queries by reading only needed data

High compression reduces file size

Predicate pushdown speeds up queries by skipping irrelevant data based on statistics

Parallel processing: row groups enable distributed/parallel processing

Rich metadata: stores statistics, encoding info, schema (so parsing is fast)

Schema evolution: add/modify columns without rewriting the entire file

Widely used in big data platforms (Spark, Hive, Presto) and storage systems

21

COMPRESSION IN DBMS

Why compression?

Reduces storage and DRAM requirements

Improves system performance by increasing data per I/O

Must be lossless → any lossy compression must be performed by application

Key trade-off

Speed vs. compression ratio → lower I/O vs. higher CPU cost

Impact on query execution

Compressed pages reduce I/O overheads

May increase CPU cost due to decompression

Sometimes queries can be run directly on compressed data

22

https://facebook.github.io/zstd/

NAÏVE COMPRESSION

Uses general-purpose algorithms (e.g., zlib, Snappy, Zstd)

Compresses data block by block without understanding its meaning

Decompression required before reading or modification → limits efficiency

Limited scope: only considers data given as input, not high-level semantics

Lower compression ratio on heterogeneous data

23

COLUMNAR COMPRESSION

Run-length encoding

Supress duplicates, e.g., 2, 2, 2, 3, 4, 4, 4, 4, 4 ➔ 2x3, 3x1, 4x5

Delta encoding

Encode differences, e.g., 2, 3, 4, 5 ➔ 2, +1, +1, +1,

Pairs well with run-length encoding, e.g., 2, +1, +1, +1 ➔ 2, +1x3

Bit packing

Use fewer bits for short integers

Pairs well with delta coding

Dictionary encoding

Replace frequent values with smaller fixed-length codes

Maintain a mapping from the codes to the original values

24

Good for mostly sorted
integers or categorical data

Good for mostly sorted
numeric data (floats)

Good for limited
precision data

Good for long,
frequent strings

DELTA ENCODING IN PARQUET

25

Source: “Efficient Data Storage for Analytics with Apache Parquet 2.0”, Julian Le Dem

https://www.infoq.com/presentations/parquet/

DELTA ENCODING IN PARQUET

26

DELTA ENCODING IN PARQUET

27

17 x 8 = 136 bytes

8 + 8 + 1 + 2 + 8 + 1 + 3 =
31 bytes

DICTIONARY ENCODING

Concept

Replaces frequent, long values (e.g., strings) with smaller fixed-length integers

Uses a dictionary from the integers to the original values

Most widely used compression technique in DBMSs

Benefits

Reduces data size

Eliminates variable-length data

Does not require pre-sorting

Improves storage & access efficiency

28

City

New York

London

Paris

New York

Tokyo

London

Code Value

1 New York

2 London

3 Paris

4 Tokyo

City

1

2

3

1

4

2

Original Data Compressed Data

Dictionary

CONCLUSION

Important to choose the right storage model for the target workload

OLTP = Row store

OLAP = Column store

Modern column stores use the hybrid storage model and data compression

Some compressions can be directly operated on, e.g., RLE and dictionary encoding

Apache Parquet

Columnar storage format optimised for efficient data compression and

fast analytical queries on large datasets

29

	Slide 1
	Slide 2: Database Workloads
	Slide 3: OLTP: On-Line Transactional Processing
	Slide 4: OLAP: On-Line Analytical Processing
	Slide 5: Observation
	Slide 6: Storage Models
	Slide 7: Row Storage Model
	Slide 8: Row Storage Model
	Slide 9: Row Storage Model
	Slide 10: Row Storage Model
	Slide 11: Row Storage Model
	Slide 12: Columnar Storage Model
	Slide 13: Columnar Storage Model
	Slide 14: Columnar Storage Model
	Slide 15: Columnar Storage Model
	Slide 17: Columnar Storage Model
	Slide 18: Hybrid Storage Model (PAX)
	Slide 19: Hybrid Storage Model
	Slide 20: Parquet File Format
	Slide 21: Parquet File Format
	Slide 22: Compression in DBMS
	Slide 23: Naïve Compression
	Slide 24: Columnar Compression
	Slide 25: Delta Encoding in Parquet
	Slide 26: Delta Encoding in Parquet
	Slide 27: Delta Encoding in Parquet
	Slide 28: Dictionary Encoding
	Slide 29: Conclusion

