Advanced Database Systems (ADBS), University of Edinburgh, 2024/25

Conjunctive Queries: Evaluation and Static Analysis

(Chapter 14 and 15 of DBT)

[DBT] Database Theory, https://github.com/pdm-book/community

Syntax of Conjunctive Queries

$$Q(\mathbf{x}) := \exists \mathbf{y} (R_1(\mathbf{v_1}) \land \cdots \land R_m(\mathbf{v_m}))$$

- R₁,...,R_m are relation names
- x, y, v₁,...,v_m are tuples of variables
- each variable mentioned in v_i appears either in x or y
- the variables in **x** are free called distinguished or output variables

It is very convenient to see conjunctive queries as rule-based queries of the form

$$Q(x) := R_1(v_1),...,R_m(v_m)$$

this is called the body of Q that can be seen as a set of atoms

A Core Relational Query Language

Conjunctive Queries (CQ)

- = $\{\sigma, \pi, \bowtie\}$ -fragment of relational algebra
- = relational calculus using only ∃ and ∧
- = simple SELECT-FROM-WHERE SQL queries (only AND and equality in the WHERE clause)

Pattern Matching Problem

List the airlines that fly directly from London to Glasgow

Airport(VIE,Vienna),
Flight(VIE,LHR,BA), Airport(LHR,London),
Flight(LHR,EDI,BA), Airport(LGW,London),
Flight(LGW,GLA,U2), Airport(LCA,Larnaca),
Flight(LCA,VIE,OS), Airport(GLA,Glasgow),
Airport(EDI,Edinburgh)

Q(z) :- Airport(x,London), Airport(y,Glasgow), Flight(x,y,z)

Pattern Matching Problem

List the airlines that fly directly from London to Glasgow

Airport(VIE,Vienna),
Flight(VIE,LHR,BA),
Airport(LHR,London),
Flight(LHR,EDI,BA),
Airport(LGW,London),
Flight(LGW,GLA,U2),
Airport(LCA,Larnaca),
Airport(GLA,Glasgow),
Airport(EDI,Edinburgh)

Q(z) :- Airport(x,London), Airport(y,Glasgow), Flight(x,y,z)

Semantics of Conjunctive Queries

- A match of a conjunctive query Q(x₁,...,x_k):- body in a database D is a homomorphism
 h from the set of atoms body to the set of atoms D
- The answer to Q(x₁,...,x_k):- body over D is the set of k-tuples
 Q(D) := {(h(x₁),...,h(x_k)) | h is a match of Q in D}
- The answer consists of the witnesses for the distinguished variables of Q

Data Complexity of Query Evaluation

- Measures the complexity in terms of the size of the database the query is fixed
- Meaningful in practice since the database is usually much bigger than the query
- We consider the following decision problem for a fixed CQ $Q(x_1,...,x_k)$:- body

Q-Evaluation

Input: a database D, and a tuple $(a_1,...,a_k)$ of values **Question:** $(a_1,...,a_k) \in Q(D)$?

Query Evaluation

- Understand the complexity of evaluating a conjunctive query over a database
- What to measure? Queries may have a large output and it would be misleading to count the output as "complexity"
- We therefore consider the following decision problem for CQ

CQ-Evaluation

Input: a database D, a CQ $\mathbb{Q}(x_1,...,x_k)$:- body, and a tuple $(a_1,...,a_k)$ of values Question: $(a_1,...,a_k) \in \mathbb{Q}(\mathbb{D})$?

combined complexity

Complexity of Query Evaluation

Theorem: CQ-Evaluation is NP-complete and in PTIME in data complexity

Few Words about NP

- P⊆NP, but it is open whether P⊂NP or P = NP one of the most important questions in mathematics and theoretical computer science
- One of the Millennium Prize Problems selected by the Clay Mathematics Institute in 2000 (1 million USD prize for the first correct solution)

3-Colorability Problem

3COL

Input: an undirected graph **G** = (V,E)

Question: is there a function $c: V \to \{R,G,B\}$ such that $(v,u) \in E \Rightarrow c(v) \neq c(u)$?

Theorem: 3COL is NP-complete

Proof:

- Guess a function c: V → {R,G,B} in polynomial time, and verify that (v,u) ∈ E ⇒ c(v) ≠ c(u) in polynomial time
- 3COL is one of the most difficult problems in the complexity class NP (it is unlikely to be solvable in polynomial time unless P = NP)

3-Colorability Problem

3COL

Input: an undirected graph G = (V,E)

Question: is there a function $c: V \to \{R,G,B\}$ such that $(v,u) \in E \Rightarrow c(v) \neq c(u)$?

Complexity of Query Evaluation

Theorem: CQ-Evaluation is NP-complete and in PTIME in data complexity

Proof:

(NP-membership) Guess-and-verify:

- Consider a database D, a CQ $Q(x_1,...,x_k)$:- body, and a tuple $(a_1,...,a_k)$ of values
- Guess a substitution h : terms(body) → terms(D) that is the identity on constants
- Verify that h is a match of Q in D, i.e., $h(body) \subseteq D$ and $(h(x_1),...,h(x_k)) = (a_1,...,a_k)$

(NP-hardness) Reduction from 3COL $\,$

NP-hardness

(NP-hardness) Reduction from 3COL

3COL

Input: an undirected graph G = (V,E)

Question: is there a function $c: V \to \{R,G,B\}$ such that $(v,u) \in E \Rightarrow c(v) \neq c(u)$?

Lemma: **G** is 3-colorable iff **G** can be mapped to **K**₃, i.e., **G**

therefore, **G** is 3-colorable iff there is a match of Q_G in $D = \{E(x,y), E(y,z), E(z,x)\}$

the Boolean CQ that represents G

Static Analysis

CQ-Satisfiability

Input: a conjunctive query Q

Question: is there a database D such that Q(D) is non-empty?

- If the answer is no, then the input query Q makes no sense
- CQ-Evaluation becomes trivial the answer is always NO!

Complexity of Query Evaluation

Theorem: CQ-Evaluation is NP-complete and in PTIME in data complexity

Proof:

(NP-membership) Guess-and-verify:

- Consider a database D, a CQ $Q(x_1,...,x_k)$:- body, and a tuple $(a_1,...,a_k)$ of values
- Guess a substitution h : terms(body) → terms(D) that is the identity on constants
- Verify that h is a match of Q in D, i.e., $h(body) \subseteq D$ and $(h(x_1),...,h(x_k)) = (a_1,...,a_k)$

(NP-hardness) Reduction from 3-colorability

(in PTIME) For every substitution h : terms(body) \rightarrow terms(D) that is the identity on constants, check if $h(body) \subseteq D$ and $(h(x_1),...,h(x_k)) = (a_1,...,a_k)$

Static Analysis

CQ-Equivalence

Input: two conjunctive queries Q₁ and Q₂

Question: $Q_1 \equiv Q_2$? or $Q_1(D) = Q_2(D)$ for every database D?

- Replace a query Q₁ with a query Q₂ that is easier to evaluate
- But, we have to be sure that $Q_1(D) = Q_2(D)$ for every database D

Static Analysis

CQ-Containment

Input: two conjunctive queries Q₁ and Q₂

Question: $Q_1 \subseteq Q_2$? or $Q_1(D) \subseteq Q_2(D)$ for every database D?

- Equivalence boils down to two containment checks
- Clearly, $Q_1(D) = Q_2(D)$ iff $Q_1(D) \subseteq Q_2(D)$ and $Q_2(D) \subseteq Q_1(D)$

Canonical Database

- Convert a conjunctive query Q into a database D[Q] the canonical database of Q
- Given a conjunctive query of the form Q(x): body, D[Q] is obtained from body by replacing each variable x with a new value c(x) = x
- E.g., given $Q(x,y) := R(x,y), P(y,z,w), R(z,x), \text{ then } D[Q] = \{R(x,y), P(y,z,w), R(z,x)\}$
- Note: The mapping c : {variables in body} → {new values} is a bijection, where c(body) = D[Q] and c¹(D[Q]) = body

Complexity of Static Analysis

CQ-Satisfiability

Input: a conjunctive query Q

Question: is there a database D such that Q(D) is non-empty?

CQ-Equivalence

Input: two conjunctive queries Q₁ and Q₂

Question: $Q_1 \equiv Q_2$? or $Q_1(D) = Q_2(D)$ for every database D?

CQ-Containment

Input: two conjunctive queries Q1 and Q2

Question: $Q_1 \subseteq Q_2$? or $Q_1(D) \subseteq Q_2(D)$ for every database D?

Satisfiability of CQs

CQ-Satisfiability

Input: a conjunctive query Q

Question: is there a database D such that Q(D) is non-empty?

Theorem: A conjunctive query Q is always satisfiable

Proof: Due to its canonical database - Q(D[Q]) is trivially non-empty

Equivalence and Containment of CQs

CQ-Equivalence

Input: two conjunctive queries Q1 and Q2

Question: $Q_1 \equiv Q_2$? or $Q_1(D) = Q_2(D)$ for every database D?

CQ-Containment

Input: two conjunctive queries Q₁ and Q₂

Question: $Q_1 \subseteq Q_2$? or $Q_1(D) \subseteq Q_2(D)$ for every database D?

 $Q_1 \equiv Q_2$ iff $Q_1 \subseteq Q_2$ and $Q_2 \subseteq Q_3$ $Q_1 \subseteq Q_2$ iff $Q_3 \equiv (Q_1 \land Q_2)$

...thus, we can safely focus on CQ-Containment

Homomorphism Theorem: Example

 $h = \{a \mapsto x, b \mapsto y, c \mapsto z, d \mapsto z\}$

- h is a query homomorphism from Q_2 to $Q_1 \Rightarrow Q_1 \subseteq Q_2$
- But, there is no homomorphism from Q_1 to $Q_2 \Rightarrow Q_1 \subset Q_2$

Homomorphism Theorem

A query homomorphism from $Q_1(x_1,...,x_k) := body_1$ to $Q_2(y_1,...,y_k) := body_2$ is a substitution $h : terms(body_1) \rightarrow terms(body_2)$ such that:

- 1. h is a homomorphism from body₁ to body₂
- 2. $(h(x_1),...,h(x_k)) = (y_1,...,y_k)$

Homomorphism Theorem: Let Q_1 and Q_2 be conjunctive queries. It holds that:

 $Q_1 \subseteq Q_2$ iff there exists a query homomorphism from Q_2 to Q_1

Homomorphism Theorem: Proof

Assume that $Q_1(x_1,...,x_k)$:- body₁ and $Q_2(y_1,...,y_k)$:- body₂

(⇒) $Q_1 ⊆ Q_2 ⇒$ there exists a query homomorphism from Q_2 to Q_1

- Clearly, $(c(x_1),...,c(x_k)) \in Q_1(D[Q_1])$ recall that $D[Q_1] = c(body_1)$
- Since $Q_1 \subseteq Q_2$, we conclude that $(c(x_1),...,c(x_k)) \in Q_2(D[Q_1])$
- Therefore, there exists a homomorphism h such that h(body₂) ⊆ D[Q₁] = c(body₂) and h((y₁,...,y_k)) = (c(x₁),...,c(x_k))
- By construction, c⁻¹(c(body₁)) = body₁
 and c⁻¹((c(x₁),...,c(x_k))) = (x₁,...,x_k)
- Therefore, c¹ ∘ h is a query homomorphism from Q₂ to Q₁

Homomorphism Theorem: Proof

Assume that $Q_1(x_1,...,x_k)$:- body₁ and $Q_2(y_1,...,y_k)$:- body₂

 (\Leftarrow) $Q_1 \subseteq Q_2 \iff$ there exists a query homomorphism from Q_2 to Q_1

- Consider a database D, and a tuple t such that t ∈ Q₁(D)
- We need to show that t ∈ Q₂(D)
- Clearly, there exists a homomorphism g such that $g(body_1) \subseteq D$ and $g((x_1,...,x_k)) = t$
- By hypothesis, there exists a query homomorphism h from Q₂ to Q₄
- Therefore, $g(h(body_2)) \subseteq D$ and $g(h((y_1,...,y_k))) = t$, which implies that $t \in Q_2(D)$

Existence of a Query Homomorphism

Theorem: Let Q_t and Q_s be conjunctive queries. The problem of deciding whether there exists a query homomorphism from Q_s to Q_t is NP-complete

Proof:

(NP-membership) Guess a substitution and verify that is a query homomorphism (NP-hardness) Easy reduction from CQ-Evaluation

By applying the homomorphism theorem we get that:

Corollary: CQ-Equivalence and CQ-Containment are NP-complete