Advanced Database Systems (ADBS), University of Edinburgh, 2024/25

Conjunctive Queries: Evaluation and Static Analysis

(Chapter 14 and 15 of DBT)

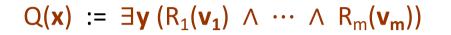
[DBT] Database Theory, https://github.com/pdm-book/community

A Core Relational Query Language

Conjunctive Queries (CQ)

- = $\{\sigma, \pi, \bowtie\}$ -fragment of relational algebra
- = relational calculus using only \exists and \land
- simple SELECT-FROM-WHERE SQL queries(only AND and equality in the WHERE clause)

Syntax of Conjunctive Queries



- R₁,...,R_m are relation names
- **x**, **y**, **v**₁,...,**v**_m are tuples of variables
- each variable mentioned in v_i appears either in x or y
- the variables in **x** are free called **distinguished** or **output variables**

It is very convenient to see conjunctive queries as rule-based queries of the form

$$Q(\mathbf{x}) := R_1(\mathbf{v_1}), \dots, R_m(\mathbf{v_m})$$

this is called the body of Q that can be seen as a set of atoms

Pattern Matching Problem

List the airlines that fly directly from London to Glasgow

Flight(VIE,LHR,BA), Flight(LHR,EDI,BA), Flight(LGW,GLA,U2), Flight(LCA,VIE,OS), Airport(VIE,Vienna), Airport(LHR,London), Airport(LGW,London), Airport(LCA,Larnaca),

Airport(GLA,Glasgow),

Airport(EDI,Edinburgh)

Q(z) :- Airport(x,London), Airport(y,Glasgow), Flight(x,y,z)

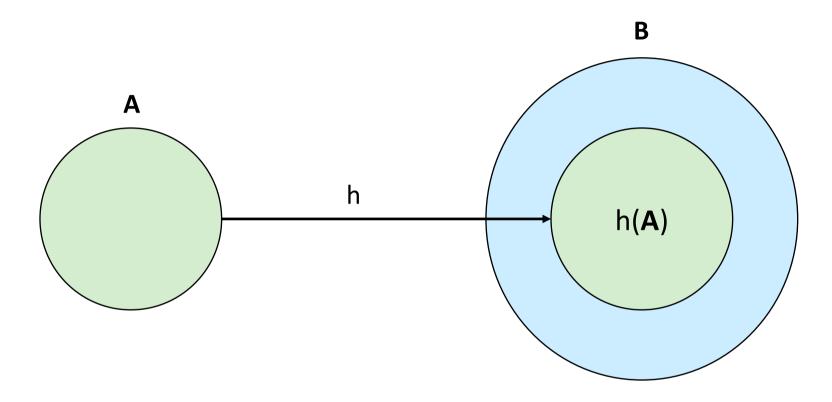
Pattern Matching Problem

List the airlines that fly directly from London to Glasgow

Flight(VIE,LHR,BA), Flight(LHR,EDI,BA), Flight(LGW,GLA,U2), Flight(LCA,VIE,OS), Airport(VIE,Vienna), Airport(LHR,London), **Airport(LGW,London)**, Airport(LCA,Larnaca), **Airport(GLA,Glasgow)**, Airport(EDI,Edinburgh)

Q(z) :- Airport(x,London), Airport(y,Glasgow), Flight(x,y,z)

Homomorphism



 $h: terms(A) \rightarrow terms(B)$ that is the identity on constants

Semantics of Conjunctive Queries

 A match of a conjunctive query Q(x₁,...,x_k) :- body in a database D is a homomorphism h from the set of atoms body to the set of atoms D

• The answer to $Q(x_1,...,x_k)$:- body over D is the set of k-tuples

 $Q(D) := \{(h(x_1),...,h(x_k)) | h is a match of Q in D\}$

• The answer consists of the witnesses for the distinguished variables of Q

Pattern Matching Problem

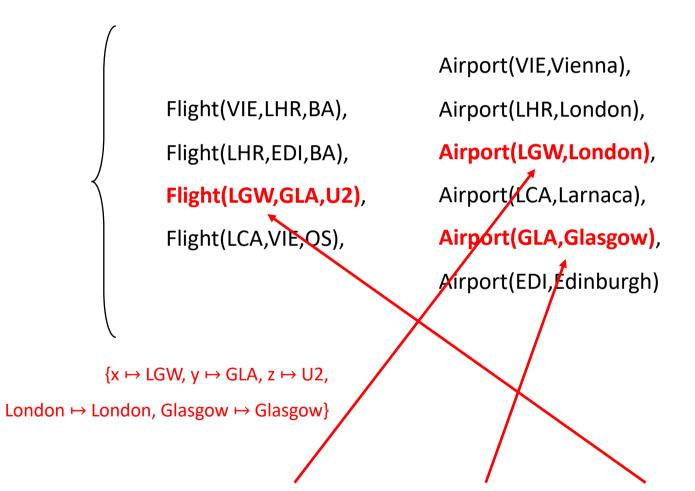
List the airlines that fly directly from London to Glasgow

Flight(VIE,LHR,BA), Flight(LHR,EDI,BA), Flight(LGW,GLA,U2), Flight(LCA,VIE,OS), Airport(VIE,Vienna), Airport(LHR,London), Airport(LGW,London), Airport(LCA,Larnaca), Airport(GLA,Glasgow), Airport(EDI,Edinburgh)

Q(z) :- Airport(x,London), Airport(y,Glasgow), Flight(x,y,z)

Pattern Matching Problem

List the airlines that fly directly from London to Glasgow



Q(z) :- Airport(x,London), Airport(y,Glasgow), Flight(x,y,z)

Query Evaluation

- Understand the complexity of evaluating a conjunctive query over a database
- What to measure? Queries may have a large output and it would be misleading to count the output as "complexity"
- We therefore consider the following decision problem for CQ

CQ-Evaluation **Input:** a database D, a CQ $Q(x_1,...,x_k)$:- body, and a tuple $(a_1,...,a_k)$ of values **Question:** $(a_1,...,a_k) \in Q(D)$?

combined complexity

Data Complexity of Query Evaluation

- Measures the complexity in terms of the size of the database the query is fixed
- Meaningful in practice since the database is usually much bigger than the query
- We consider the following decision problem for a fixed CQ $Q(x_1,...,x_k)$:- body

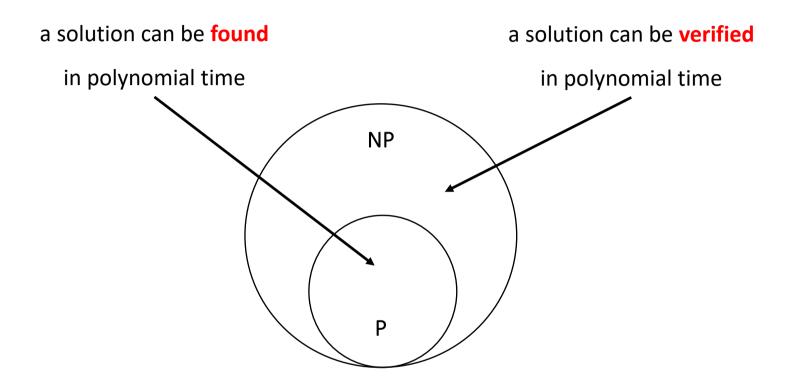
Q-Evaluation

Input: a database D, and a tuple $(a_1,...,a_k)$ of values **Question:** $(a_1,...,a_k) \in Q(D)$?

Complexity of Query Evaluation

Theorem: CQ-Evaluation is NP-complete and in PTIME in data complexity

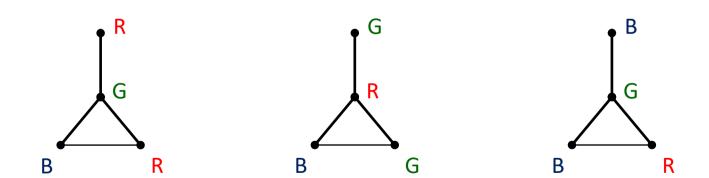
Few Words about NP



- P ⊆ NP, but it is open whether P ⊂ NP or P = NP one of the most important questions in mathematics and theoretical computer science
- One of the Millennium Prize Problems selected by the Clay Mathematics Institute in 2000 (1 million USD prize for the first correct solution)

3-Colorability Problem

3COL Input: an undirected graph G = (V,E)Question: is there a function $c : V \rightarrow \{R,G,B\}$ such that $(v,u) \in E \Rightarrow c(v) \neq c(u)$?



3-Colorability Problem

3COL

Input: an undirected graph **G** = (V,E)

Question: is there a function $c : V \rightarrow \{R,G,B\}$ such that $(v,u) \in E \Rightarrow c(v) \neq c(u)$?

Theorem: 3COL is NP-complete

Proof:

- Guess a function c : V → {R,G,B} in polynomial time, and verify that (v,u) ∈ E ⇒ c(v) ≠ c(u) in polynomial time
- 3COL is one of the most difficult problems in the complexity class NP (it is unlikely to be solvable in polynomial time unless P = NP)

Complexity of Query Evaluation

Theorem: CQ-Evaluation is NP-complete and in PTIME in data complexity

Proof:

(NP-membership) Guess-and-verify:

- Consider a database D, a CQ $Q(x_1,...,x_k) := body$, and a tuple $(a_1,...,a_k)$ of values
- Guess a substitution $h : terms(body) \rightarrow terms(D)$ that is the identity on constants
- Verify that h is a match of Q in D, i.e., $h(body) \subseteq D$ and $(h(x_1),...,h(x_k)) = (a_1,...,a_k)$

(NP-hardness) Reduction from 3COL

NP-hardness

(NP-hardness) Reduction from 3COL

3COL Input: an undirected graph G = (V, E)Question: is there a function $c : V \rightarrow \{R, G, B\}$ such that $(v, u) \in E \Rightarrow c(v) \neq c(u)$?

Lemma: G is 3-colorable iff **G** can be mapped to
$$K_3$$
, i.e., **G** $\xrightarrow{\text{hom}}$

therefore, **G** is 3-colorable iff there is a match of Q_G in D = {E(x,y), E(y,z), E(z,x)} the Boolean CQ that represents **G**

Complexity of Query Evaluation

Theorem: CQ-Evaluation is NP-complete and in PTIME in data complexity

Proof:

(NP-membership) Guess-and-verify:

- Consider a database D, a CQ $Q(x_1,...,x_k)$:- body, and a tuple $(a_1,...,a_k)$ of values
- Guess a substitution $h : terms(body) \rightarrow terms(D)$ that is the identity on constants
- Verify that h is a match of Q in D, i.e., $h(body) \subseteq D$ and $(h(x_1),...,h(x_k)) = (a_1,...,a_k)$

(NP-hardness) Reduction from 3-colorability

(in PTIME) For every substitution h : terms(body) \rightarrow terms(D) that is the identity on constants, check if h(body) \subseteq D and (h(x₁),...,h(x_k)) = (a₁,...,a_k)

Static Analysis

CQ-Satisfiability

Input: a conjunctive query Q

Question: is there a database D such that Q(D) is non-empty?

- If the answer is no, then the input query Q makes no sense
- CQ-Evaluation becomes trivial the answer is always NO!

Static Analysis

CQ-Equivalence

Input: two conjunctive queries Q_1 and Q_2

Question: $Q_1 \equiv Q_2$? or $Q_1(D) = Q_2(D)$ for every database D?

- Replace a query Q_1 with a query Q_2 that is easier to evaluate
- But, we have to be sure that $Q_1(D) = Q_2(D)$ for every database D

Static Analysis

CQ-Containment

Input: two conjunctive queries Q_1 and Q_2

Question: $Q_1 \subseteq Q_2$? or $Q_1(D) \subseteq Q_2(D)$ for every database D?

- Equivalence boils down to two containment checks
- Clearly, $Q_1(D) = Q_2(D)$ iff $Q_1(D) \subseteq Q_2(D)$ and $Q_2(D) \subseteq Q_1(D)$

Complexity of Static Analysis

CQ-Satisfiability

Input: a conjunctive query Q

Question: is there a database D such that Q(D) is non-empty?

CQ-Equivalence

Input: two conjunctive queries Q_1 and Q_2

Question: $Q_1 \equiv Q_2$? or $Q_1(D) = Q_2(D)$ for every database D?

CQ-Containment

Input: two conjunctive queries Q_1 and Q_2

Question: $Q_1 \subseteq Q_2$? or $Q_1(D) \subseteq Q_2(D)$ for every database D?

Canonical Database

• Convert a conjunctive query Q into a database D[Q] - the canonical database of Q

Given a conjunctive query of the form Q(x) :- body, D[Q] is obtained from body by replacing each variable x with a new value c(x) = x

• E.g., given Q(x,y) := R(x,y), P(y,z,w), R(z,x), then $D[Q] = \{R(x,y), P(y,z,w), R(z,x)\}$

Note: The mapping c : {variables in body} → {new values} is a bijection, where
 c(body) = D[Q] and c⁻¹(D[Q]) = body

Satisfiability of CQs

CQ-Satisfiability

Input: a conjunctive query **Q**

Question: is there a database D such that Q(D) is non-empty?

Theorem: A conjunctive query **Q** is always satisfiable

Proof: Due to its canonical database - Q(D[Q]) is trivially non-empty

Equivalence and Containment of CQs

CQ-Equivalence

Input: two conjunctive queries Q_1 and Q_2

Question: $Q_1 \equiv Q_2$? or $Q_1(D) = Q_2(D)$ for every database D?

CQ-Containment

Input: two conjunctive queries Q_1 and Q_2

Question: $Q_1 \subseteq Q_2$? or $Q_1(D) \subseteq Q_2(D)$ for every database D?

 $Q_1 \equiv Q_2$ iff $Q_1 \subseteq Q_2$ and $Q_2 \subseteq Q_1$

$$Q_1 \subseteq Q_2$$
 iff $Q_1 \equiv (Q_1 \land Q_2)$

...thus, we can safely focus on **CQ**-Containment

Homomorphism Theorem

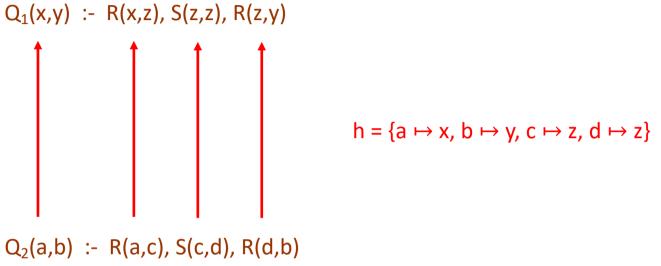
A query homomorphism from $Q_1(x_1,...,x_k)$:- body₁ to $Q_2(y_1,...,y_k)$:- body₂ is a substitution h : terms(body₁) \rightarrow terms(body₂) such that:

- 1. h is a homomorphism from $body_1$ to $body_2$
- 2. $(h(x_1),...,h(x_k)) = (y_1,...,y_k)$

Homomorphism Theorem: Let Q_1 and Q_2 be conjunctive queries. It holds that:

 $Q_1 \subseteq Q_2$ iff there exists a query homomorphism from Q_2 to Q_1

Homomorphism Theorem: Example



- h is a query homomorphism from Q_2 to $Q_1 \implies Q_1 \subseteq Q_2$ •
- But, there is no homomorphism from Q_1 to $Q_2 \implies Q_1 \subset Q_2$ •

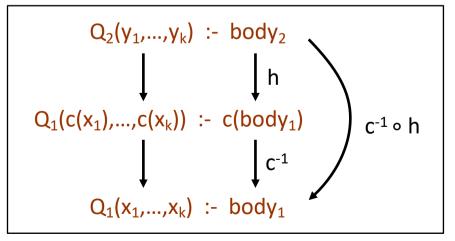
Homomorphism Theorem: Proof

Assume that $Q_1(x_1,...,x_k)$:- body₁ and $Q_2(y_1,...,y_k)$:- body₂

 $(\Rightarrow) Q_1 \subseteq Q_2 \Rightarrow$ there exists a query homomorphism from Q_2 to Q_1

- Clearly, $(c(x_1),...,c(x_k)) \in Q_1(D[Q_1])$ recall that $D[Q_1] = c(body_1)$
- Since $Q_1 \subseteq Q_2$, we conclude that $(c(x_1),...,c(x_k)) \in Q_2(D[Q_1])$
- Therefore, there exists a homomorphism h such that h(body₂) ⊆ D[Q₁] = c(body₁) and h((y₁,...,y_k)) = (c(x₁),...,c(x_k))
- By construction, c⁻¹(c(body₁)) = body₁
 and c⁻¹((c(x₁),...,c(x_k))) = (x₁,...,x_k)
- Therefore, c⁻¹ h is a

query homomorphism from Q_2 to Q_1

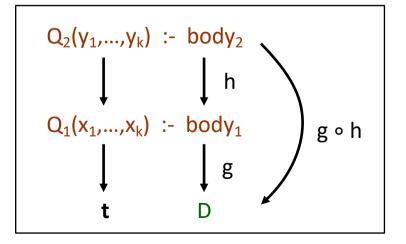


Homomorphism Theorem: Proof

Assume that $Q_1(x_1,...,x_k)$:- body₁ and $Q_2(y_1,...,y_k)$:- body₂

(\Leftarrow) $Q_1 \subseteq Q_2 \Leftrightarrow$ there exists a query homomorphism from Q_2 to Q_1

- Consider a database D, and a tuple **t** such that $\mathbf{t} \in \mathbf{Q}_1(D)$
- We need to show that $\mathbf{t} \in \mathbf{Q}_2(D)$
- Clearly, there exists a homomorphism g such that $g(body_1) \subseteq D$ and $g((x_1,...,x_k)) = t$
- By hypothesis, there exists a query homomorphism h from Q_2 to Q_1
- Therefore, $g(h(body_2)) \subseteq D$ and $g(h((y_1,...,y_k))) = \mathbf{t}$, which implies that $\mathbf{t} \in \mathbf{Q}_2(D)$



Existence of a Query Homomorphism

Theorem: Let Q_1 and Q_2 be conjunctive queries. The problem of deciding whether there exists a query homomorphism from Q_2 to Q_1 is NP-complete

Proof:

(NP-membership) Guess a substitution and verify that is a query homomorphism (NP-hardness) Easy reduction from CQ-Evaluation

By applying the homomorphism theorem we get that:

Corollary: CQ-Equivalence and **CQ**-Containment are NP-complete