Advanced Database Systems (ADBS), University of Edinburgh, 2024/25

Conjunctive Queries: Minimization

(Chapter 16 of DBT)

[DBT] Database Theory, https://github.com/pdm-book/community

Complexity of Static Analysis

Theorem: Let Q_1 and Q_2 be conjunctive queries. The problem of deciding whether there exists a query homomorphism from Q_2 to Q_3 is NP-complete

Proof:

(NP-membership) Guess a substitution, and verify that is a query homomorphism **(NP-hardness)** Easy reduction from **CQ**-Evaluation

By applying the homomorphism theorem we get that:

Corollary: CQ-Equivalence and CQ-Containment are NP-complete

Complexity of Query Evaluation

Theorem: CQ-Evaluation is NP-complete and in PTIME in data complexity

Proof:

(NP-membership) Guess-and-check:

- Consider a database D, a CQ $Q(x_1,...,x_k)$:- body, and a tuple $(a_1,...,a_k)$ of values
- Guess a substitution h : terms(body) → terms(D)
- Verify that h is a match of Q in D, i.e., $h(body) \subseteq D$ and $(h(x_1),...,h(x_k)) = (a_1,...,a_k)$

(NP-hardness) Reduction from 3-colorability

(in PTIME) For every substitution $h : terms(body) \rightarrow terms(D)$, check if $h(body) \subseteq D$ and $(h(x_1),...,h(x_k)) = (a_1,...,a_k)$

Minimizing Conjunctive Queries

- Goal: minimize the number of joins in a query
- A conjunctive query Q_1 is minimal if there is no conjunctive query Q_2 such that:
 - 1. $Q_1 \equiv Q_2$
 - 2. Q₂ has fewer atoms than Q₁
- The task of CQ minimization is, given a conjunctive query Q, to compute a minimal one that is equivalent to Q

Homomorphism Theorem

A query homomorphism from $Q_1(x_1,...,x_k) := body_1$ to $Q_2(y_1,...,y_k) := body_2$ is a substitution $h: terms(body_1) \rightarrow terms(body_2)$ such that:

- 1. h is a homomorphism from body₁ to body₂
- 2. $(h(x_1),...,h(x_k)) = (y_1,...,y_k)$

Homomorphism Theorem: Let Q_1 and Q_2 be conjunctive queries. It holds that:

 $Q_1 \subseteq Q_2$ iff there exists a query homomorphism from Q_2 to Q_1

Minimization Procedure

```
\label{eq:minimization} \begin{tabular}{ll} Minimization(Q(x_1,...,x_k) :- body) \\ \begin{tabular}{ll} Repeat until no change \\ & choose an atom $\alpha \in body$ such that the variables $x_1,...,x_k$ appear in body $\setminus \{\alpha\}$ \\ & \begin{tabular}{ll} if there is a query homomorphism from $Q(x_1,...,x_k) :- body$ to $Q(x_1,...,x_k) :- body $\setminus \{\alpha\}$ \\ & \begin{tabular}{ll} then body := body $\setminus \{\alpha\}$ \\ \begin{tabular}{ll} Return $Q(x_1,...,x_k) :- body $\setminus \{\alpha\}$ \\ \end{tabular}
```

Note: if there is a query homomorphism from $Q(x_1,...,x_k)$:- body to $Q(x_1,...,x_k)$:- body $\setminus \{\alpha\}$, then the two queries are equivalent since there is trivially a query homomorphism from the latter to the former query

Minimization by Deletion

By exploiting the homomorphism theorem we can show the following:

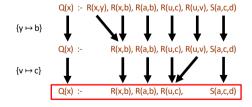
Theorem: Consider a conjunctive query $Q_1(x_1,...,x_k) := body_1$. If Q_1 is equivalent to a conjunctive query $Q_2(y_1,...,y_k) := body_2$ where $|body_2| < |body_1|$, then Q_1 is equivalent to a query $Q_3(x_1,...,x_k) := body_3$ such that $body_3 \subseteq body_1$

₩

The above theorem says that to minimize a conjunctive query $Q_t(x_1,...,x_k):$ body we simply need to remove some atoms from body

Minimization Procedure: Example

(a,b,c,d are constants)



minimal query

Note: the mapping $x \mapsto a$ is not valid since x is a distinguished variable

Uniqueness of Minimal Queries

Natural question: does the order in which we remove atoms from the body of the input conjunctive query matter?

Theorem: Consider a conjunctive query Q. Let Q_d and Q_d be minimal conjunctive queries such that $Q_d \equiv Q$ and $Q_d \equiv Q$. Then, Q_d and Q_d are isomorphic (i.e., they are the same up to variable renaming)

Therefore, given a conjunctive query Q, the result of Minimization(Q) is unique (up to variable renaming) and is called the core of Q