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Conjunctive Queries: Fast Evaluation

(Chapter 18 of DBT)

Advanced Database Systems (ADBS), University of Edinburgh, 2024/25

[DBT] Database Theory, https://github.com/pdm-book/community

Complexity of Query Evaluation

Theorem: CQ-Evaluation is NP-complete and in PTIME in data complexity

Proof:
(NP-membership) Guess-and-check:

• Consider a database D, a CQ Q(x1,…,xk) :- body, and a tuple (a1,…,ak) of values
• Guess a substitution h : terms(body) → terms(D)

• Verify that h is a match of Q in D, i.e., h(body) ⊆D and (h(x1),…,h(xk)) = (a1,…,ak)

(NP-hardness) Reduction from 3-colorability

(in PTIME) For every substitution h : terms(body) → terms(D), check if h(body) ⊆D

and (h(x1),…,h(xk)) = (a1,…,ak)

Complexity of Query Evaluation

Evaluating a CQ Q over a database D takes time ||D||O(||Q||)

Theorem: CQ-Evaluation is NP-complete and in PTIME in data complexity

Minimizing Conjunctive Queries

Database theory has developed principled methods for optimizing CQs:

• Find an equivalent CQ with minimal number of atoms (the core)

• Provides a notion of “true” optimality

Q(x)  :- R(x,y), R(x,b), R(a,b), R(u,c), R(u,v), S(a,c,d)

Q(x)  :- R(x,y), R(x,b), R(a,b), R(u,c), R(u,v), S(a,c,d)

{y ↦ b}

Q(x)  :- R(x,y), R(x,b), R(a,b), R(u,c), R(u,v), S(a,c,d)

{v ↦ c}

minimal query
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Minimizing Conjunctive Queries

• But, a minimal equivalent CQ might not be easier to evaluate  - remains NP-hard

• “Good” classes of CQs for which query evaluation is tractable (in combined complexity):

‒ Graph-based
‒ Hypergraph-based

(Hyper)graph of Conjunctive Queries

Q  :- R(x,y,z), R(z,u,v), R(v,w,x)

graph of Q - G(Q) hypergraph of Q - H(Q) 
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“Good” Classes of Conjunctive Queries

• Graph-based

‒ CQs of bounded treewidth - their graph has bounded treewidth

• Hypergraph-based:

‒ CQs of bounded hypertree width - their hypergraph has bounded hypertree width

‒ Acyclic CQs  - their hypergraph has hypertree width 1

measures how close a graph is to a tree

measures how close a hypergraph is to an acyclic one

Acyclic Hypergraphs

A join tree of a hypergraph H = (V,E) is a labeled tree T = (N,F,L), where L : N → Esuch that:

1. For each hyperedge e ∈ E of H, there exists n ∈N such that e = L(n)

2. For each node u ∈ V of H, the set {n ∈N | u ∈ L(n)} induces a connected subtree of T
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Acyclic Hypergraphs
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condition 2 is violated

A join tree of a hypergraph H = (V,E) is a labeled tree T = (N,F,L), where L : N → Esuch that:

1. For each hyperedge e ∈ E of H, there exists n ∈N such that e = L(n)

2. For each node u ∈ V of H, the set {n ∈N | u ∈ L(n)} induces a connected subtree of T

A join tree of a hypergraph H = (V,E) is a labeled tree T = (N,F,L), where L : N → Esuch that:

1. For each hyperedge e ∈ E of H, there exists n ∈N such that e = L(n)

2. For each node u ∈ V of H, the set {n ∈N | u ∈ L(n)} induces a connected subtree of T

Definition: A hypergraph is acyclic if it has a join tree

Acyclic Hypergraphs
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32
prime example of a cyclic hypergraph

Acyclic Hypergraphs
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32
but this is acyclic

A join tree of a hypergraph H = (V,E) is a labeled tree T = (N,F,L), where L : N → Esuch that:

1. For each hyperedge e ∈ E of H, there exists n ∈N such that e = L(n)

2. For each node u ∈ V of H, the set {n ∈N | u ∈ L(n)} induces a connected subtree of T

Definition: A hypergraph is acyclic if it has a join tree

Relevant Algorithmic Tasks

ACYCLICITY

Input: a conjunctive query Q

Question: is Q acyclic?  or  is H(Q) acyclic?

ACQ-Evaluation

Input: a database D, an acyclic conjunctive query Q, and a tuple (a1,…,ak) of values

Question: (a1,…,ak) ∈Q(D)?

{Q∈ CQ | H(Q) is acyclic}
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Checking Acyclicity
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Via the GYO-reduction (Graham, Yu and Ozsoyoglu)

1. Eliminate nodes occurring in at most one hyperedge

2. Eliminate hyperedges that are empty or contained in other hyperedges
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Checking Acyclicity

10

6
7

4
5

8

9

11

{8,9}

{1,3,4,5,6,7,8} {9,10,11}

{11,12}

{12,13}

{1,2,3}

Via the GYO-reduction (Graham, Yu and Ozsoyoglu)

1. Eliminate nodes occurring in at most one hyperedge

2. Eliminate hyperedges that are empty or contained in other hyperedges

Checking Acyclicity

10

6
7

4
5

8

9

{8,9}

{1,3,4,5,6,7,8} {9,10,11}

{11,12}

{12,13}

{1,2,3}

Via the GYO-reduction (Graham, Yu and Ozsoyoglu)

1. Eliminate nodes occurring in at most one hyperedge

2. Eliminate hyperedges that are empty or contained in other hyperedges

Checking Acyclicity

6
7

4
5

8

9

{8,9}

{1,3,4,5,6,7,8} {9,10,11}

{11,12}

{12,13}

{1,2,3}

Via the GYO-reduction (Graham, Yu and Ozsoyoglu)

1. Eliminate nodes occurring in at most one hyperedge

2. Eliminate hyperedges that are empty or contained in other hyperedges

Checking Acyclicity

6
7

4
5

8

{8,9}

{1,3,4,5,6,7,8} {9,10,11}

{11,12}

{12,13}

{1,2,3}

Via the GYO-reduction (Graham, Yu and Ozsoyoglu)

1. Eliminate nodes occurring in at most one hyperedge

2. Eliminate hyperedges that are empty or contained in other hyperedges



6

Checking Acyclicity
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empty hypergraph

Checking Acyclicity

Via the GYO-reduction (Graham, Yu and Ozsoyoglu)

1. Eliminate nodes occurring in at most one hyperedge

2. Eliminate hyperedges that are empty or contained in other hyperedges

Theorem: A hypergraphH is acyclic iff GYO(H) = ∅
⇓

checking whether H is acyclic is feasible in polynomial time, and if it is 

the case, a join tree can be found in polynomial time

⇓
Theorem: ACYCLICITY is in PTIME
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Checking Acyclicity

Theorem: ACYCLICITY is in PTIME

NOTE: actually, we can check whether a CQ is acyclic in time O(||Q||) 

linear time in the size Q

Evaluating Acyclic CQs

NOTE: actually, if H(Q) is acyclic, then Q can be evaluated in time O(||D|| ⋅ ||Q||)

linear time in the size of D and Q

Theorem: ACQ-Evaluation is in PTIME

Yannakaki’s Algorithm

Given a database D and an acyclic Boolean CQ Q

1. Compute the join tree T of H(Q)

2. Assign to each node of T the corresponding relation of D

3. Compute semi-joins in a bottom up traversal of T

4. Return YES if the resulting relation at the root of T is non-empty; 

otherwise, return NO

Dynamic programming algorithm over the join tree

Yannakaki’s Algorithm: Step 1

Q  :- R1(x1,x2,x3), R2(x2,x3), R3(x2,x6), R4(x3), R5(x2,x4,x3)

{x2,x3}

{x1,x2,x3}{x2,x6}

{x2,x4,x3}{x3}
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Yannakaki’s Algorithm: Step 2

x1 x2 x3

s1 c2 b1

s1 c1 b2

s3 c3 b1

s3 c1 b4

s2 c2 b3

x2 x4 x3

c2 a1 b1

c1 a1 b2

c1 a2 b2

x3

b1

b2

x2 x3

c1 b2

c2 b1

c4 b6

x2 x6

c1 d2

c1 d1

c3 d1

Yannakaki’s Algorithm: Step 3
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s1 c2 b1

s1 c1 b2
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c1 d2
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c3 d1

Yannakaki’s Algorithm: Step 3

x1 x2 x3

s1 c2 b1

s1 c1 b2

s3 c3 b1

s3 c1 b4

s2 c2 b3

x2 x4 x3

c2 a1 b1

c1 a1 b2

c1 a2 b2

x3

b1

b2

x2 x3

c1 b2
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s1 c2 b1
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c1 b2

c2 b1
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x2 x6

c1 d2

c1 d1

c3 d1
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Yannakaki’s Algorithm: Step 3

x1 x2 x3

s1 c2 b1

s1 c1 b2

s3 c3 b1

s3 c1 b4

s2 c2 b3

x2 x4 x3

c2 a1 b1

c1 a1 b2

c1 a2 b2

x3

b1

b2

x2 x3

c1 b2

c2 b1

c4 b6

x2 x6

c1 d2

c1 d1

c3 d1

Yannakaki’s Algorithm: Step 3

x1 x2 x3

s1 c2 b1

s1 c1 b2

s3 c3 b1

s3 c1 b4

s2 c2 b3

x2 x4 x3

c2 a1 b1

c1 a1 b2

c1 a2 b2

x3

b1

b2

x2 x3

c1 b2

c2 b1

c4 b6

x2 x6

c1 d2

c1 d1

c3 d1

Yannakaki’s Algorithm: Step 4

x1 x2 x3

s1 c2 b1

s1 c1 b2

s3 c3 b1

s3 c1 b4

s2 c2 b3

x2 x4 x3

c2 a1 b1

c1 a1 b2

c1 a2 b2

x3

b1

b2

x2 x3

c1 b2

c2 b1

c4 b6

x2 x6

c1 d2

c1 d1

c3 d1

YES

Recap

• “Good” classes of CQs for which query evaluation is tractable  - conditions 

based on the graph or hypergraph of the CQ

• Acyclic CQs  - their hypergraph is acyclic, can be checked in linear time

• Evaluating acyclic CQs is feasible in linear time (Yannakaki’s algorithm)


