Advanced Database Systems (ADBS), University of Edinburgh, 2024/25

Conjunctive Queries: Fast Evaluation

(Chapter 18 of DBT)

Complexity of Query Evaluation

Theorem: CQ-Evaluation is NP-complete and in PTIME in data complexity

Proof:

(NP-membership) Guess-and-check:

- Consider a database D, a CQ $Q(x_1,...,x_k)$:- body, and a tuple $(a_1,...,a_k)$ of values
- Guess a substitution h : terms(body) → terms(D)
- Verify that h is a match of Q in D, i.e., $h(body) \subseteq D$ and $(h(x_1),...,h(x_k)) = (a_1,...,a_k)$

(NP-hardness) Reduction from 3-colorability

(in PTIME) For every substitution h : terms(body) \rightarrow terms(D), check if h(body) \subseteq D and (h(x₁),...,h(x_k)) = (a₁,...,a_k)

Complexity of Query Evaluation

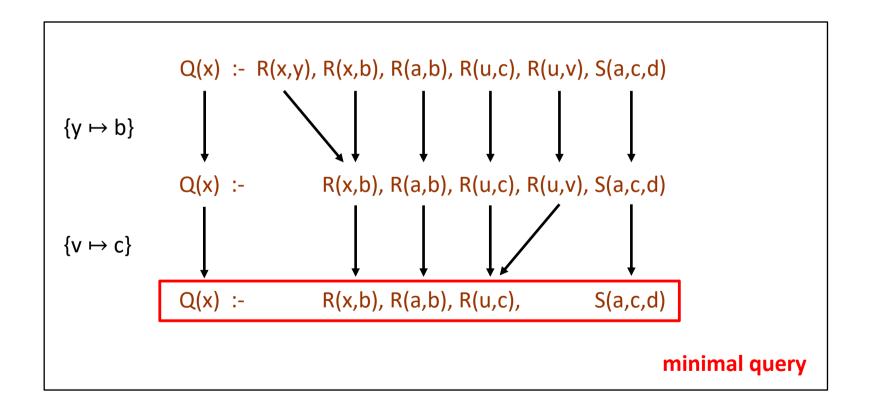
Theorem: CQ-Evaluation is NP-complete and in PTIME in data complexity

Evaluating a CQ Q over a database D takes time ||D||O(||Q||)

Minimizing Conjunctive Queries

Database theory has developed principled methods for optimizing CQs:

- Find an equivalent CQ with minimal number of atoms (the core)
- Provides a notion of "true" optimality



Minimizing Conjunctive Queries

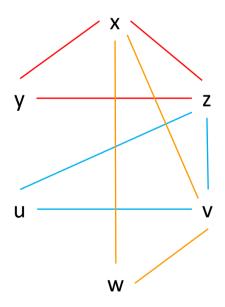
• But, a minimal equivalent CQ might not be easier to evaluate - remains NP-hard

- "Good" classes of CQs for which query evaluation is tractable (in combined complexity):
 - Graph-based
 - Hypergraph-based

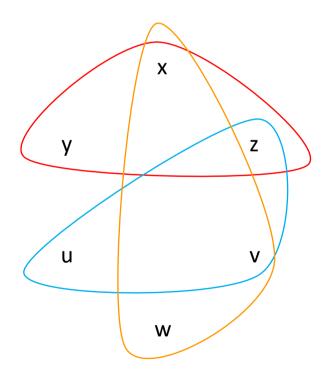
(Hyper)graph of Conjunctive Queries

$$Q := R(x,y,z), R(z,u,v), R(v,w,x)$$

graph of Q - G(Q)



hypergraph of Q - H(Q)



"Good" Classes of Conjunctive Queries

measures how close a graph is to a tree

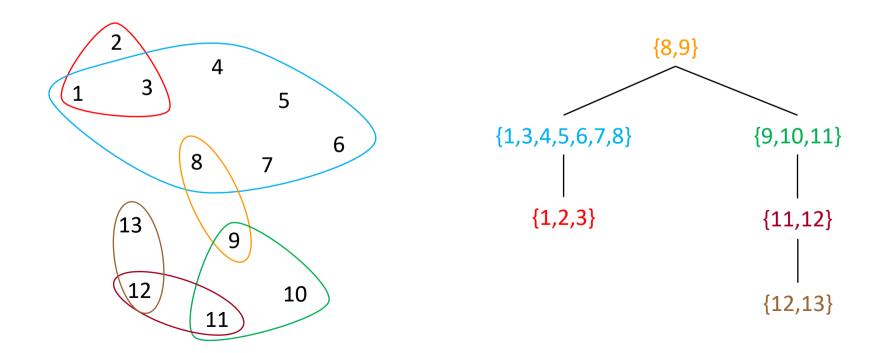
- Graph-based
 - CQs of bounded treewidth their graph has bounded treewidth

measures how close a hypergraph is to an acyclic one

- Hypergraph-based:
 - CQs of bounded hypertree width their hypergraph has bounded hypertree width
 - Acyclic CQs their hypergraph has hypertree width 1

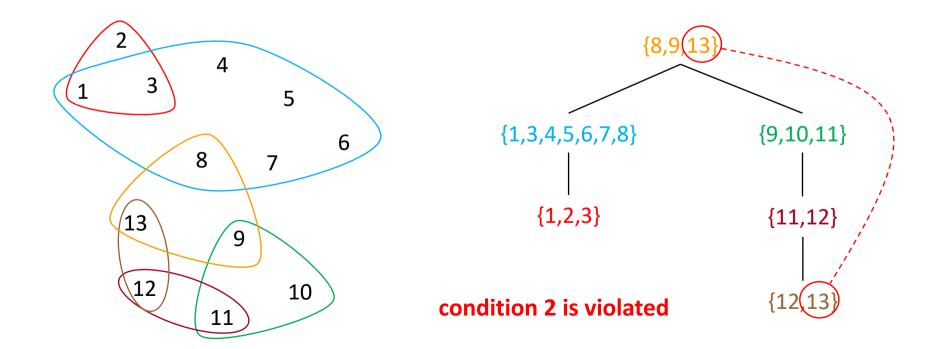
A join tree of a hypergraph $\mathbf{H} = (V,E)$ is a labeled tree $\mathbf{T} = (N,F,L)$, where $L: N \to E$ such that:

- 1. For each hyperedge $e \in E$ of **H**, there exists $n \in N$ such that e = L(n)
- 2. For each node $u \in V$ of H, the set $\{n \in N \mid u \in L(n)\}$ induces a connected subtree of T



A join tree of a hypergraph $\mathbf{H} = (V,E)$ is a labeled tree $\mathbf{T} = (N,F,L)$, where $L: N \to E$ such that:

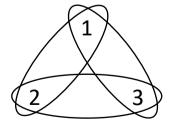
- 1. For each hyperedge $e \in E$ of H, there exists $n \in N$ such that e = L(n)
- 2. For each node $u \in V$ of **H**, the set $\{n \in N \mid u \in L(n)\}$ induces a connected subtree of **T**



A join tree of a hypergraph $\mathbf{H} = (V,E)$ is a labeled tree $\mathbf{T} = (N,F,L)$, where $L: N \to E$ such that:

- 1. For each hyperedge $e \in E$ of **H**, there exists $n \in N$ such that e = L(n)
- 2. For each node $u \in V$ of H, the set $\{n \in N \mid u \in L(n)\}$ induces a connected subtree of T

Definition: A hypergraph is acyclic if it has a join tree

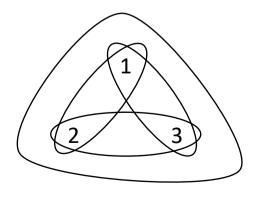


prime example of a cyclic hypergraph

A join tree of a hypergraph $\mathbf{H} = (V,E)$ is a labeled tree $\mathbf{T} = (N,F,L)$, where $L: N \to E$ such that:

- 1. For each hyperedge $e \in E$ of **H**, there exists $n \in N$ such that e = L(n)
- 2. For each node $u \in V$ of H, the set $\{n \in N \mid u \in L(n)\}$ induces a connected subtree of T

Definition: A hypergraph is acyclic if it has a join tree



but this is acyclic

Relevant Algorithmic Tasks

ACYCLICITY

Input: a conjunctive query **Q**

Question: is **Q** acyclic? or is H(Q) acyclic?

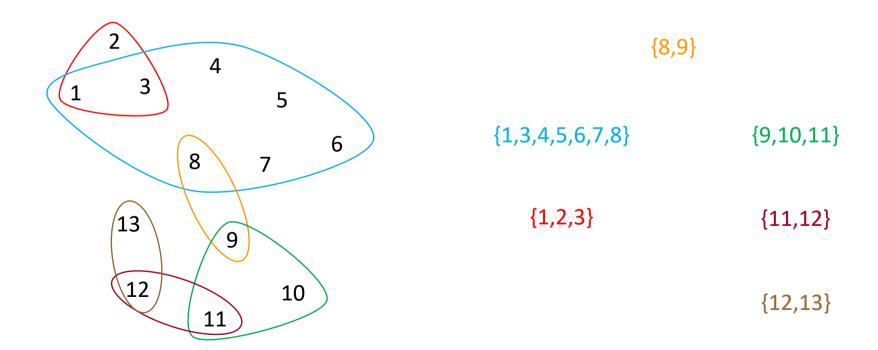
 ${Q \in CQ \mid H(Q) \text{ is acyclic}}$

ACQ-Evaluation

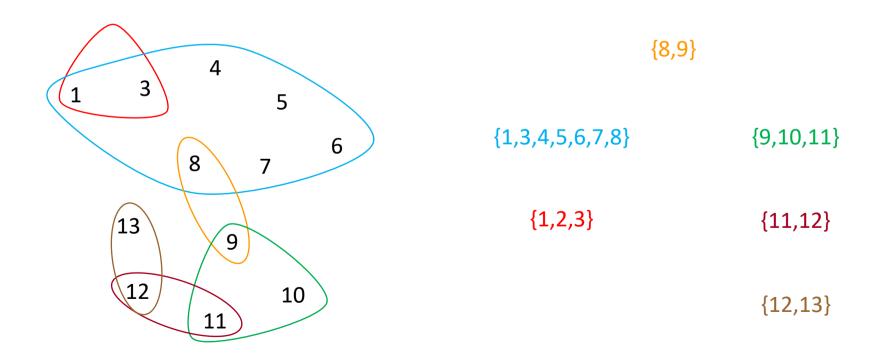
Input: a database D, an acyclic conjunctive query \mathbb{Q} , and a tuple $(a_1,...,a_k)$ of values

Question: $(a_1,...,a_k) \in \mathbb{Q}(D)$?

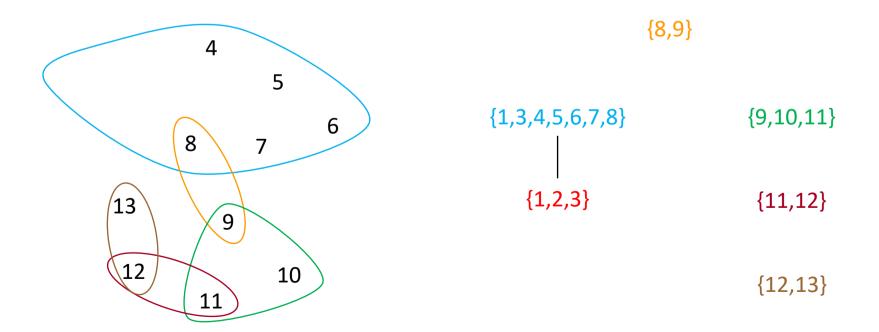
- 1. Eliminate nodes occurring in at most one hyperedge
- 2. Eliminate hyperedges that are empty or contained in other hyperedges



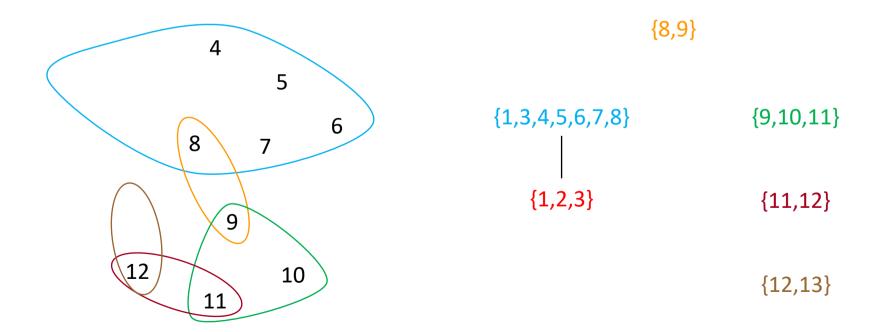
- 1. Eliminate nodes occurring in at most one hyperedge
- 2. Eliminate hyperedges that are empty or contained in other hyperedges



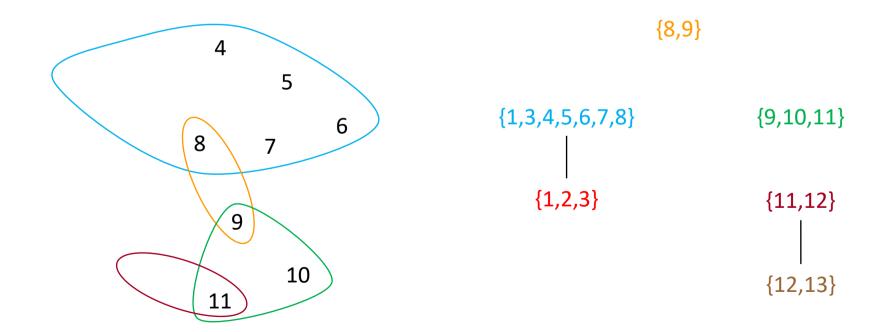
- 1. Eliminate nodes occurring in at most one hyperedge
- 2. Eliminate hyperedges that are empty or contained in other hyperedges



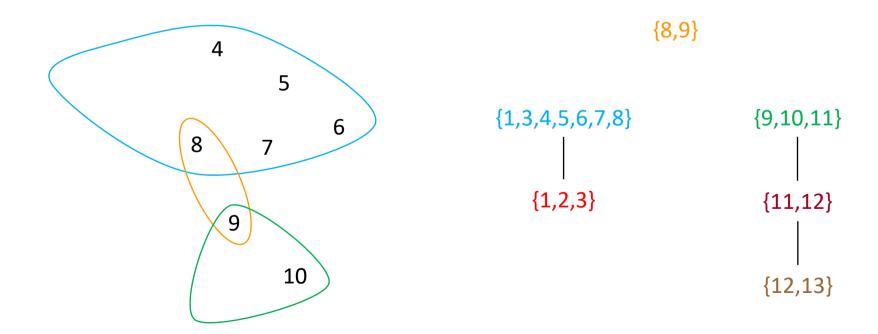
- 1. Eliminate nodes occurring in at most one hyperedge
- 2. Eliminate hyperedges that are empty or contained in other hyperedges



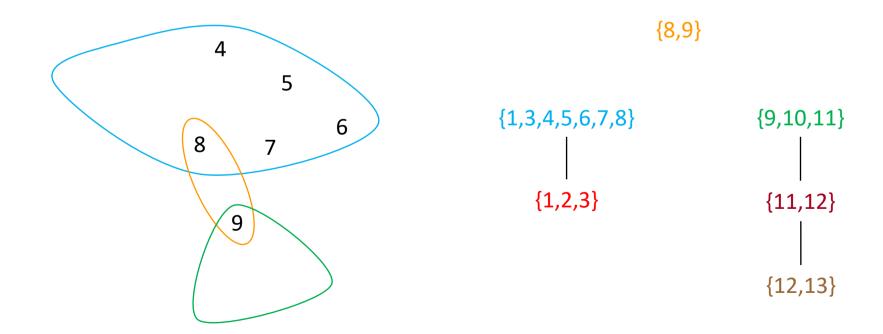
- 1. Eliminate nodes occurring in at most one hyperedge
- 2. Eliminate hyperedges that are empty or contained in other hyperedges



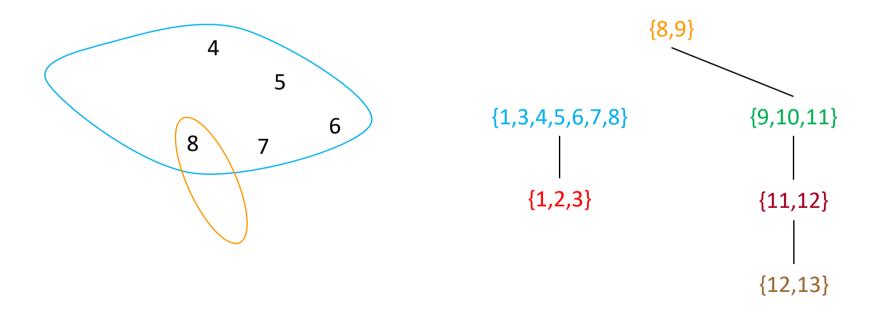
- 1. Eliminate nodes occurring in at most one hyperedge
- 2. Eliminate hyperedges that are empty or contained in other hyperedges



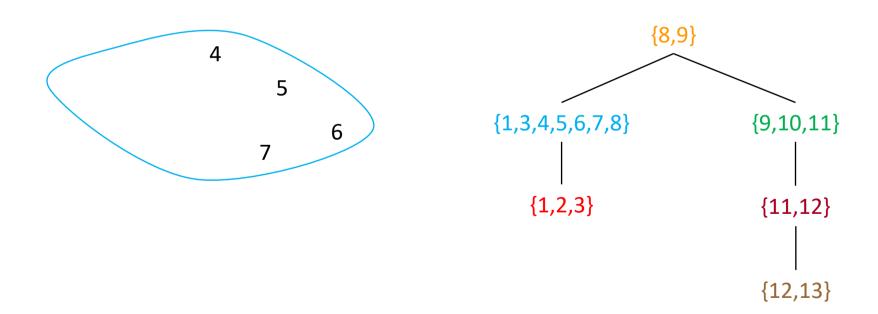
- 1. Eliminate nodes occurring in at most one hyperedge
- 2. Eliminate hyperedges that are empty or contained in other hyperedges



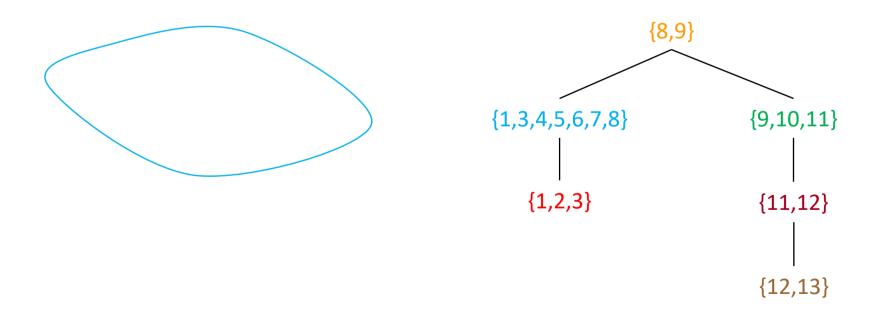
- 1. Eliminate nodes occurring in at most one hyperedge
- 2. Eliminate hyperedges that are empty or contained in other hyperedges



- 1. Eliminate nodes occurring in at most one hyperedge
- 2. Eliminate hyperedges that are empty or contained in other hyperedges



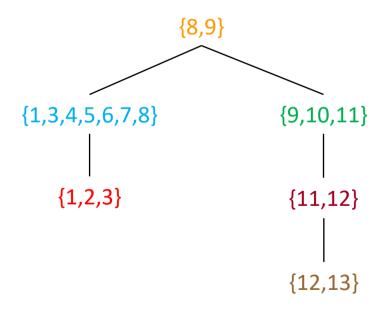
- 1. Eliminate nodes occurring in at most one hyperedge
- 2. Eliminate hyperedges that are empty or contained in other hyperedges



Via the GYO-reduction (Graham, Yu and Ozsoyoglu)

- 1. Eliminate nodes occurring in at most one hyperedge
- 2. Eliminate hyperedges that are empty or contained in other hyperedges

empty hypergraph



Via the GYO-reduction (Graham, Yu and Ozsoyoglu)

- 1. Eliminate nodes occurring in at most one hyperedge
- 2. Eliminate hyperedges that are empty or contained in other hyperedges

Theorem: A hypergraph **H** is acyclic iff $GYO(H) = \emptyset$

 \downarrow

the case, a join tree can be found in polynomial time.

 \Downarrow

Theorem: ACYCLICITY is in PTIME

Theorem: ACYCLICITY is in PTIME

NOTE: actually, we can check whether a CQ is acyclic in time O(||Q||)

linear time in the size Q

Evaluating Acyclic CQs

Theorem: ACQ-Evaluation is in PTIME

NOTE: actually, if H(Q) is acyclic, then Q can be evaluated in time $O(||D|| \cdot ||Q||)$

linear time in the size of D and Q

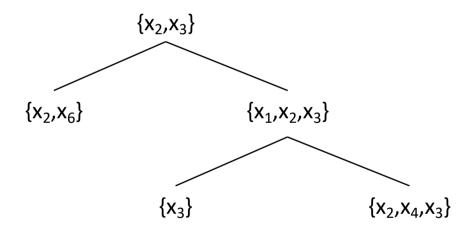
Yannakaki's Algorithm

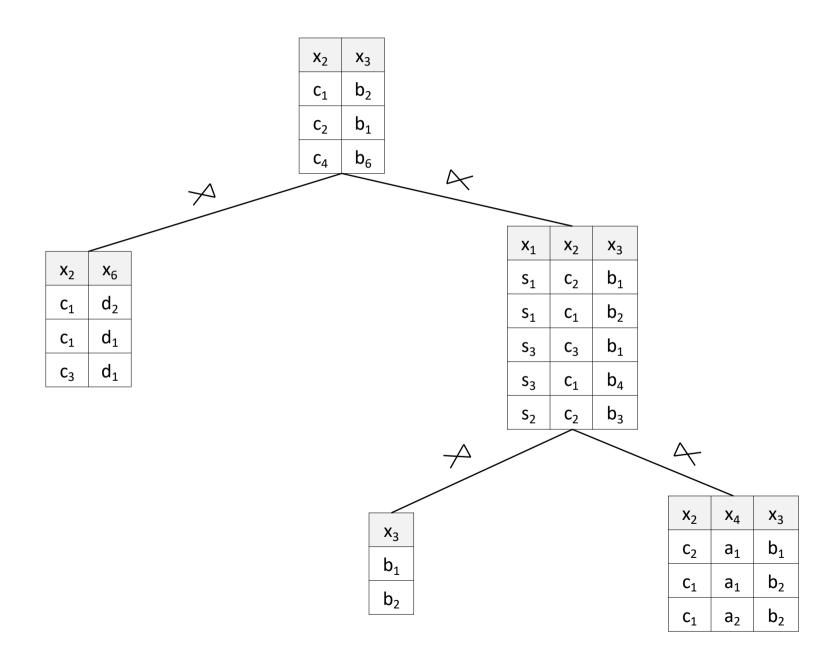
Dynamic programming algorithm over the join tree

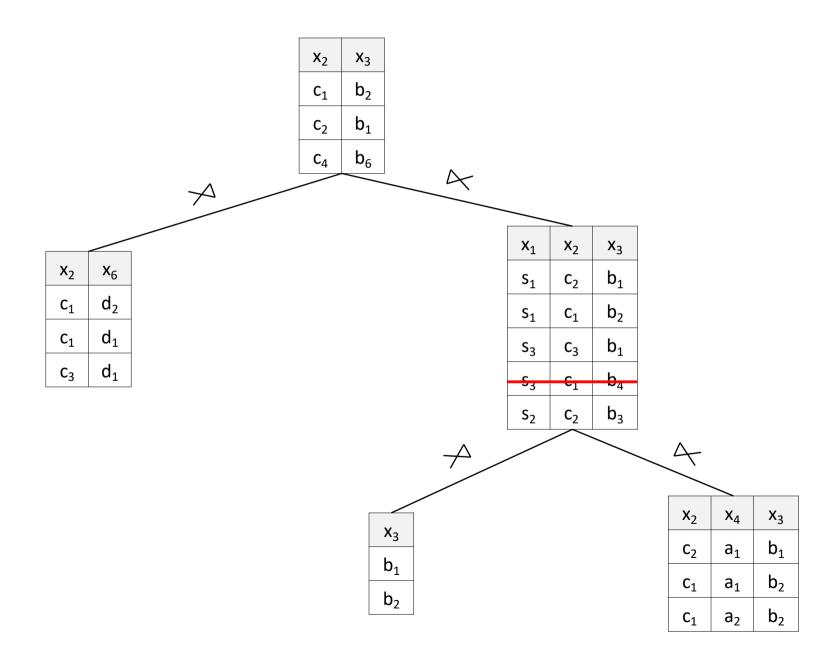
Given a database D and an acyclic Boolean CQ Q

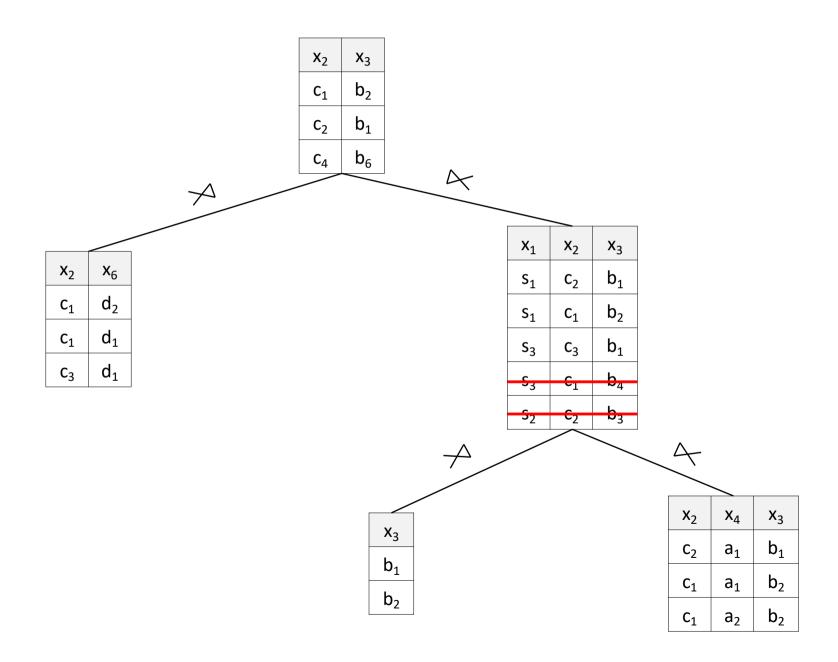
- 1. Compute the join tree **T** of H(Q)
- 2. Assign to each node of **T** the corresponding relation of D
- 3. Compute semi-joins in a bottom up traversal of T
- 4. Return YES if the resulting relation at the root of **T** is non-empty; otherwise, return NO

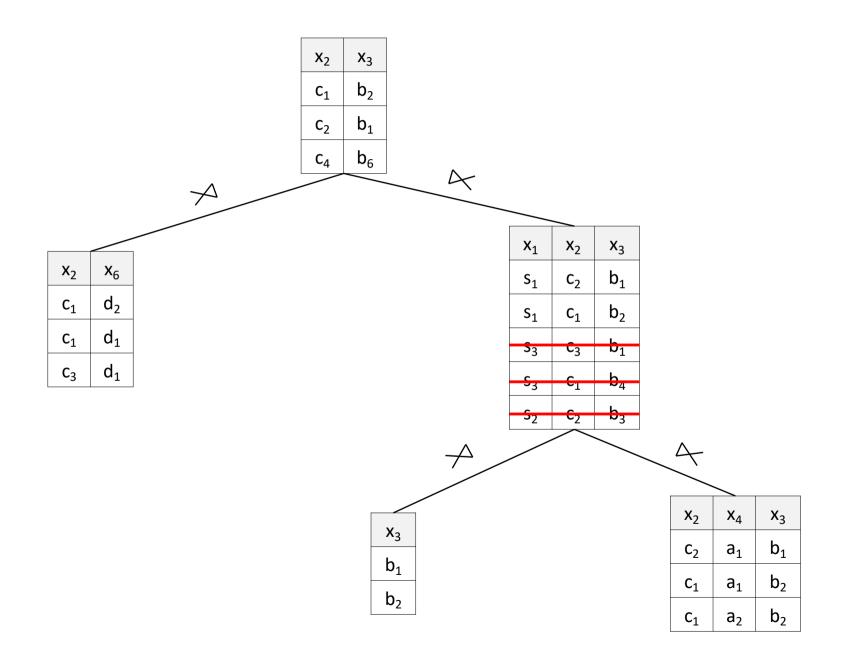
Q :- $R_1(x_1,x_2,x_3)$, $R_2(x_2,x_3)$, $R_3(x_2,x_6)$, $R_4(x_3)$, $R_5(x_2,x_4,x_3)$

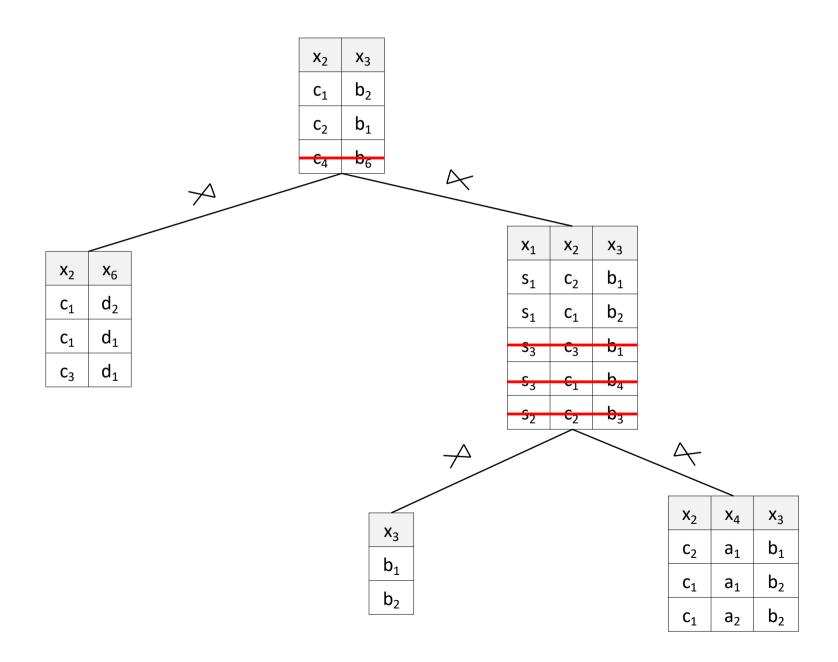


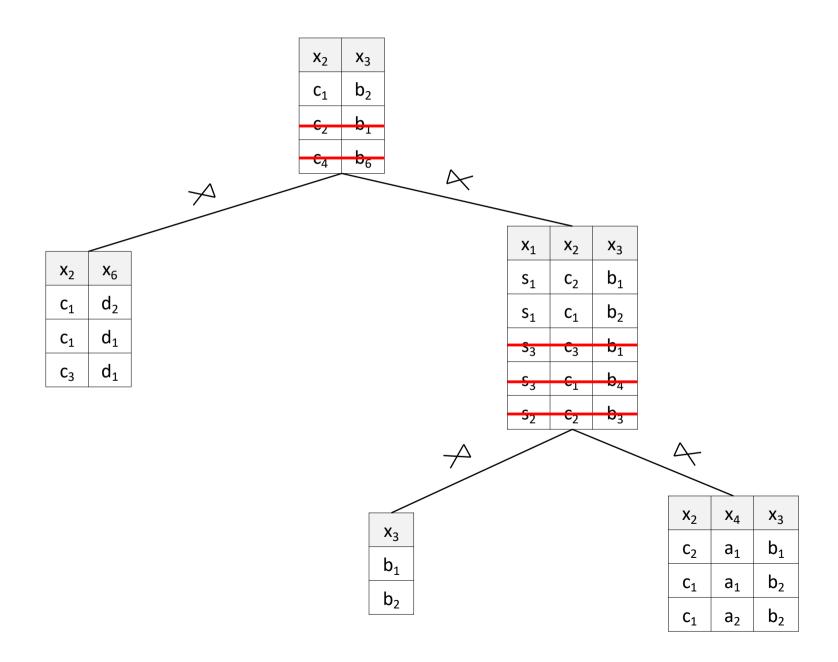














Recap

 "Good" classes of CQs for which query evaluation is tractable - conditions based on the graph or hypergraph of the CQ

• Acyclic CQs - their hypergraph is acyclic, can be checked in linear time

• Evaluating acyclic CQs is feasible in linear time (Yannakaki's algorithm)