Advanced Database Systems (ADBS), University of Edinburgh, 2024/25

Conjunctive Queries: Fast Evaluation

(Chapter 18 of DBT)

[DBT] Database Theory, https://github.com/pdm-book/community

Complexity of Query Evaluation

Theorem: CQ-Evaluation is NP-complete and in PTIME in data complexity

Proof:
(NP-membership) Guess-and-check:
e Consider a database D, a CQ Q(xy,...,xi) :- body, and a tuple (a4,...,ay) of values

* @Guess a substitution h : terms(body) — terms(D)

* Verify that hiisa match of Qin D, i.e., h(body) € D and (h(xy),...,h(xy)) = (ay,...,a¢)
(NP-hardness) Reduction from 3-colorability

(in PTIME) For every substitution h : terms(body) — terms(D), check if h(body) € D
and (h(xl)l"'lh(xk)) = (all"'lak)

Complexity of Query Evaluation

Theorem: CQ-Evaluation is NP-complete and in PTIME in data complexity

Evaluating a CQ Q over a database D takes time | |D| |o(l1alD

Minimizing Conjunctive Queries

Database theory has developed principled methods for optimizing CQs:
* Find an equivalent CQ with minimal number of atoms (the core)

* Provides a notion of “true” optimality

Q(x) :- R(x,y), R(x,b), R(a,b), R(u,c), R(u,v), S(a,c,d)

s N]

Q(x) :- R(x,b), R(a,b), R(u,c), R(u,v), S(a,c,d)
e \ \ I \/ \
Q(x) :- R(x,b), R(a,b), R(u,c), S(a,c,d)

minimal query

Minimizing Conjunctive Queries

e But, a minimal equivalent CQ might not be easier to evaluate - remains NP-hard

* “Good” classes of CQs for which query evaluation is tractable (in combined complexity):
— Graph-based

— Hypergraph-based

(Hyper)graph of Conjunctive Queries

Q . R(lelz)l R(Z,U,V),

graph of Q - G(Q) hypergraph of Q - H(Q)
T
/ X \ X
y — z y z
-

1

W W

“Good” Classes of Conjunctive Queries

measures how close a graph is to a tree
 Graph-based /
— CQs of bounded treewidth - their graph has bounded treewidth

measures how close a hypergraph is to an acyclic one
* Hypergraph-based: /
— CQs of bounded hypertree width - their hypergraph has bounded hypertree width

— Acyclic CQs - their hypergraph has hypertree width 1

Acyclic Hypergraphs

A join tree of a hypergraph H = (V,E) is a labeled tree T = (N,F,L), where L : N = E such that:
1. For each hyperedge e € E of H, there exists n € N such that e = L(n)

2. Foreachnodeu € VofH,theset{n €N | u€ L(n)}induces a connected subtree of T

T

{1,3,4,5,6,7,8} {9,10,11}

{1,2,3} {11,12}

{12,13}

Acyclic Hypergraphs

A join tree of a hypergraph H = (V,E) is a labeled tree T = (N,F,L), where L : N = E such that:
1. For each hyperedge e € E of H, there exists n € N such that e = L(n)

2. Foreachnodeu € VofH,theset{n €N | u€ L(n)}induces a connected subtree of T

{1,3,4,5,6,7,8} {9,10,11} .

1
1
1
1
7

E?\ f (1,2,3} 11,12y
5 y
@.b 10 condition 2 is violated {12@

Acyclic Hypergraphs

A join tree of a hypergraph H = (V,E) is a labeled tree T = (N,F,L), where L : N = E such that:
1. For each hyperedge e € E of H, there exists n € N such that e = L(n)

2. Foreachnodeu € VofH,theset{n €N | u€ L(n)}induces a connected subtree of T

Definition: A hypergraph is acyclic if it has a join tree

prime example of a cyclic hypergraph

Acyclic Hypergraphs

A join tree of a hypergraph H = (V,E) is a labeled tree T = (N,F,L), where L : N = E such that:
1. For each hyperedge e € E of H, there exists n € N such that e = L(n)

2. Foreachnodeu € VofH,theset{n €N | u€ L(n)}induces a connected subtree of T

Definition: A hypergraph is acyclic if it has a join tree

but this is acyclic

Relevant Algorithmic Tasks

ACYCLICITY
Input: a conjunctive query Q

Question: is Q acyclic? or is H(Q) acyclic?

{Q € CQ | H(Q) is acyclic}

/

[4
ACQ-Evaluation

Input: a database D, an acyclic conjunctive query Q, and a tuple (a,...,ax) of values

Question: (a4,...,a,) € Q(D)?

Checking Acyclicity

Via the GYO-reduction (Graham, Yu and Ozsoyoglu)
1. Eliminate nodes occurring in at most one hyperedge

2. Eliminate hyperedges that are empty or contained in other hyperedges

{1,3,4,5,6,7,8} {9,10,11}
{1,2,3} {11,12}

{12,13}

Checking Acyclicity

Via the GYO-reduction (Graham, Yu and Ozsoyoglu)
1. Eliminate nodes occurring in at most one hyperedge

2. Eliminate hyperedges that are empty or contained in other hyperedges

{1131415161718} {9110111}
{1,2,3} {11,12}

{12,13}

Checking Acyclicity

Via the GYO-reduction (Graham, Yu and Ozsoyoglu)
1. Eliminate nodes occurring in at most one hyperedge

2. Eliminate hyperedges that are empty or contained in other hyperedges

{1,3,4,5,6,7,8} {9,10,11}
{1,2,3} {11,12}

{12,13}

Checking Acyclicity

Via the GYO-reduction (Graham, Yu and Ozsoyoglu)
1. Eliminate nodes occurring in at most one hyperedge

2. Eliminate hyperedges that are empty or contained in other hyperedges

{1,3,4,5,6,7,8} {9,10,11}
{1,2,3} {11,12}

{12,13}

Checking Acyclicity

Via the GYO-reduction (Graham, Yu and Ozsoyoglu)
1. Eliminate nodes occurring in at most one hyperedge

2. Eliminate hyperedges that are empty or contained in other hyperedges

{1,3,4,5,6,7,8} {9,10,11}
{1,2,3} {11,12}

{12,13}

Checking Acyclicity

Via the GYO-reduction (Graham, Yu and Ozsoyoglu)
1. Eliminate nodes occurring in at most one hyperedge

2. Eliminate hyperedges that are empty or contained in other hyperedges

{1,3,4,5,6,7,8} {9,10,11}

{1,2,3} {11,12}

{12,13}

Checking Acyclicity

Via the GYO-reduction (Graham, Yu and Ozsoyoglu)
1. Eliminate nodes occurring in at most one hyperedge

2. Eliminate hyperedges that are empty or contained in other hyperedges

{1,3,4,5,6,7,8} {9,10,11}

{1,2,3} {11,12}

{12,13}

Checking Acyclicity

Via the GYO-reduction (Graham, Yu and Ozsoyoglu)
1. Eliminate nodes occurring in at most one hyperedge

2. Eliminate hyperedges that are empty or contained in other hyperedges

T

{1,3,4,5,6,7,8} {9,10,11}

{1,2,3} {11,12}

{12,13}

Checking Acyclicity

Via the GYO-reduction (Graham, Yu and Ozsoyoglu)
1. Eliminate nodes occurring in at most one hyperedge

2. Eliminate hyperedges that are empty or contained in other hyperedges

T

{1,3,4,5,6,7,8} {9,10,11}

{1,2,3} {11,12}

{12,13}

Checking Acyclicity

Via the GYO-reduction (Graham, Yu and Ozsoyoglu)
1. Eliminate nodes occurring in at most one hyperedge

2. Eliminate hyperedges that are empty or contained in other hyperedges

T

{1,3,4,5,6,7,8} {9,10,11}

{1,2,3} {11,12}

{12,13}

Checking Acyclicity

Via the GYO-reduction (Graham, Yu and Ozsoyoglu)
1. Eliminate nodes occurring in at most one hyperedge

2. Eliminate hyperedges that are empty or contained in other hyperedges

T

empty hypergraph {1,3,4,5,6,7,8} {9,10,11}

{1,2,3} {11,12}

{12,13}

Checking Acyclicity

Via the GYO-reduction (Graham, Yu and Ozsoyoglu)
1. Eliminate nodes occurring in at most one hyperedge

2. Eliminate hyperedges that are empty or contained in other hyperedges

Theorem: A hypergraph H is acyclic iff GYO(H) = @
U
checking whether H is acyclic is feasible in polynomial time, and if it is
the case, a join tree can be found in polynomial time
U
Theorem: ACYCLICITY is in PTIME

Checking Acyclicity

Theorem: ACYCLICITY is in PTIME

NOTE: actually, we can check whether a CQ is acyclic in time O(| | Q]| |)

linear time in the size Q

Evaluating Acyclic CQs

Theorem: ACQ-Evaluation is in PTIME

NOTE: actually, if H(Q) is acyclic, then Q can be evaluated in time O(| |D|]| - | |Q]|)

linear time in the size of D and Q

Yannakaki’s Algorithm

Dynamic programming algorithm over the join tree

Given a database D and an acyclic Boolean CQ Q
1. Compute the join tree T of H(Q)
2. Assign to each node of T the corresponding relation of D
3. Compute semi-joins in a bottom up traversal of T

4. Return YES if the resulting relation at the root of T is non-empty;

otherwise, return NO

Yannakaki’s Algorithm: Step 1

Q :- Ri(X1,X2,X3), Ra(X2,X3), R3(X2,Xs), Ra(X3), Rs(X2,X4,X3)

{x2,%3}

T

{XZIXG} {X11X2rx3}

T

{xs} {X2,Xa,X3}

Yannakaki’s Algorithm: Step 2

Xy | X3
c, | by
c, | by
c, | bg

X2 | X
¢ | dy
c; | dy
c; | dy

X1 | X2 | X3
S1 | & | by
S, | ¢ | by
S3 | €3 | by
S3 | ¢ | by
S | ¢ | bs

Xy | Xg | X3
C; | a1 | by
€t a; | by
C; | a, | by

Yannakaki’s Algorithm: Step 3

Xy | X3
c, | by
c, | by
c, | bg

X2 | X
¢ | dy
c; | dy
c; | dy

X1 | X2 | X3
S, | C | by
S| & | by
S3 | €3 | by
=53 €7 bﬂ_
S | ¢ | bs

Xy | Xg | X3
C; | a1 | by
€t a; | by
i a3 | b,

Yannakaki’s Algorithm: Step 3

Xy | X3
c, | by
c, | by
c, | bg

X2 | X
¢ | dy
c; | dy
c; | dy

X1 | X2 | X3
S, | C | by
S| & | by
S3 | €3 | by
=53 €7 bﬂ_
—Sr——€r—b7—

Xy | Xg | X3
C; | a1 | by
€t a; | by
i a3 | b,

Yannakaki’s Algorithm:

X2 | X3
¢ | b,
c, | by
c, | bg

X2 | X
¢ | dy
c; | dy
c; | dy

X1 | X2 | X3
S1 | & | by
S| & | by
St b1
=53 €7 bﬂ_
—Sy——€r—b1—

Xy | Xg | X3
C; | a1 | by
€t a; | by
C; | a, | by

Yannakaki’s Algorithm:

X2 | X3
¢ | b,
c, | by
&b

X2 | X
¢ | dy
c; | dy
c; | dy

X1 | X2 | X3
S1 | & | by
S| & | by
St b1
=53 €7 bﬂ_
—Sy——€r—b1—

Xy | Xg | X3
C; | a1 | by
€t a; | by
C; | a, | by

Yannakaki’s Algorithm: Step 3

X2 | X3
¢ | b,
—c—b_
&b e
7%3
X1 | X2 | X3
X2 | s S, | C | by
G | 9% S| & | by
G| % St b1
G |4 b
—Sr——€r—b7—

Xy | Xg | X3
C; | a1 | by
€t a; | by
i a3 | b,

Yannakaki’s Algorithm: Step 4

X2 | X3
‘B YES
—e—b—
&b e
A
X; | Xo | X3
X2 | s S, | C | by
G | S; | ¢ | b,
G | 4 ST 3 b1
c; | dy P P N
—Sy——€r—b1—

Xy | Xg | X3
C; | a1 | by
€t a; | by
i a3 | b,

Recap

* “Good” classes of CQs for which query evaluation is tractable - conditions

based on the graph or hypergraph of the CQ

* Acyclic CQs - their hypergraph is acyclic, can be checked in linear time

» Evaluating acyclic CQs is feasible in linear time (Yannakaki’s algorithm)

