
Conjunctive Queries: Fast Evaluation

(Chapter 18 of DBT)

Advanced Database Systems (ADBS), University of Edinburgh, 2024/25

[DBT] Database Theory, https://github.com/pdm-book/community

Complexity of Query Evaluation

Theorem: CQ-Evaluation is NP-complete and in PTIME in data complexity

Proof:

(NP-membership) Guess-and-check:

• Consider a database D, a CQ Q(x1,…,xk) :- body, and a tuple (a1,…,ak) of values

• Guess a substitution h : terms(body) → terms(D)

• Verify that h is a match of Q in D, i.e., h(body) ⊆ D and (h(x1),…,h(xk)) = (a1,…,ak)

(NP-hardness) Reduction from 3-colorability

(in PTIME) For every substitution h : terms(body) → terms(D), check if h(body) ⊆ D

and (h(x1),…,h(xk)) = (a1,…,ak)

Complexity of Query Evaluation

Evaluating a CQ Q over a database D takes time ||D||O(||Q||)

Theorem: CQ-Evaluation is NP-complete and in PTIME in data complexity

Minimizing Conjunctive Queries

Database theory has developed principled methods for optimizing CQs:

• Find an equivalent CQ with minimal number of atoms (the core)

• Provides a notion of “true” optimality

Q(x) :- R(x,y), R(x,b), R(a,b), R(u,c), R(u,v), S(a,c,d)

Q(x) :- R(x,y), R(x,b), R(a,b), R(u,c), R(u,v), S(a,c,d)

{y ↦ b}

Q(x) :- R(x,y), R(x,b), R(a,b), R(u,c), R(u,v), S(a,c,d)

{v ↦ c}

minimal query

Minimizing Conjunctive Queries

• But, a minimal equivalent CQ might not be easier to evaluate - remains NP-hard

• “Good” classes of CQs for which query evaluation is tractable (in combined complexity):

‒ Graph-based

‒ Hypergraph-based

(Hyper)graph of Conjunctive Queries

Q :- R(x,y,z), R(z,u,v), R(v,w,x)

graph of Q - G(Q) hypergraph of Q - H(Q)

x

y

u v

w

z

x

y

u v

w

z

“Good” Classes of Conjunctive Queries

• Graph-based

‒ CQs of bounded treewidth - their graph has bounded treewidth

• Hypergraph-based:

‒ CQs of bounded hypertree width - their hypergraph has bounded hypertree width

‒ Acyclic CQs - their hypergraph has hypertree width 1

measures how close a graph is to a tree

measures how close a hypergraph is to an acyclic one

Acyclic Hypergraphs

A join tree of a hypergraph H = (V,E) is a labeled tree T = (N,F,L), where L : N → E such that:

1. For each hyperedge e ∈ E of H, there exists n ∈ N such that e = L(n)

2. For each node u ∈ V of H, the set {n ∈ N | u ∈ L(n)} induces a connected subtree of T

1

6
7

3
4

8

5

2

9

10
11

12

13

{8,9}

{1,3,4,5,6,7,8} {9,10,11}

{11,12}

{12,13}

{1,2,3}

Acyclic Hypergraphs

{8,9,13}

{1,3,4,5,6,7,8} {9,10,11}

{11,12}

{12,13}

{1,2,3}

1

6
7

3
4

8

5

2

9

10
11

12

13

condition 2 is violated

A join tree of a hypergraph H = (V,E) is a labeled tree T = (N,F,L), where L : N → E such that:

1. For each hyperedge e ∈ E of H, there exists n ∈ N such that e = L(n)

2. For each node u ∈ V of H, the set {n ∈ N | u ∈ L(n)} induces a connected subtree of T

A join tree of a hypergraph H = (V,E) is a labeled tree T = (N,F,L), where L : N → E such that:

1. For each hyperedge e ∈ E of H, there exists n ∈ N such that e = L(n)

2. For each node u ∈ V of H, the set {n ∈ N | u ∈ L(n)} induces a connected subtree of T

Definition: A hypergraph is acyclic if it has a join tree

Acyclic Hypergraphs

1

32
prime example of a cyclic hypergraph

Acyclic Hypergraphs

1

32
but this is acyclic

A join tree of a hypergraph H = (V,E) is a labeled tree T = (N,F,L), where L : N → E such that:

1. For each hyperedge e ∈ E of H, there exists n ∈ N such that e = L(n)

2. For each node u ∈ V of H, the set {n ∈ N | u ∈ L(n)} induces a connected subtree of T

Definition: A hypergraph is acyclic if it has a join tree

Relevant Algorithmic Tasks

ACYCLICITY

Input: a conjunctive query Q

Question: is Q acyclic? or is H(Q) acyclic?

ACQ-Evaluation

Input: a database D, an acyclic conjunctive query Q, and a tuple (a1,…,ak) of values

Question: (a1,…,ak) ∈ Q(D)?

{Q ∈ CQ | H(Q) is acyclic}

Checking Acyclicity

2

10

13

1 3

6
7

4

5

8

9

11
12

{8,9}

{1,3,4,5,6,7,8} {9,10,11}

{11,12}

{12,13}

{1,2,3}

Via the GYO-reduction (Graham, Yu and Ozsoyoglu)

1. Eliminate nodes occurring in at most one hyperedge

2. Eliminate hyperedges that are empty or contained in other hyperedges

Checking Acyclicity

10

13

1 3

6
7

4

5

8

9

11
12

{8,9}

{1,3,4,5,6,7,8} {9,10,11}

{11,12}

{12,13}

{1,2,3}

Via the GYO-reduction (Graham, Yu and Ozsoyoglu)

1. Eliminate nodes occurring in at most one hyperedge

2. Eliminate hyperedges that are empty or contained in other hyperedges

Checking Acyclicity

10

13

6
7

4

5

8

9

11
12

{8,9}

{1,3,4,5,6,7,8} {9,10,11}

{11,12}

{12,13}

{1,2,3}

Via the GYO-reduction (Graham, Yu and Ozsoyoglu)

1. Eliminate nodes occurring in at most one hyperedge

2. Eliminate hyperedges that are empty or contained in other hyperedges

Checking Acyclicity

10

6
7

4

5

8

9

11
12

{8,9}

{1,3,4,5,6,7,8} {9,10,11}

{11,12}

{12,13}

{1,2,3}

Via the GYO-reduction (Graham, Yu and Ozsoyoglu)

1. Eliminate nodes occurring in at most one hyperedge

2. Eliminate hyperedges that are empty or contained in other hyperedges

Checking Acyclicity

10

6
7

4

5

8

9

11

{8,9}

{1,3,4,5,6,7,8} {9,10,11}

{11,12}

{12,13}

{1,2,3}

Via the GYO-reduction (Graham, Yu and Ozsoyoglu)

1. Eliminate nodes occurring in at most one hyperedge

2. Eliminate hyperedges that are empty or contained in other hyperedges

Checking Acyclicity

10

6
7

4

5

8

9

{8,9}

{1,3,4,5,6,7,8} {9,10,11}

{11,12}

{12,13}

{1,2,3}

Via the GYO-reduction (Graham, Yu and Ozsoyoglu)

1. Eliminate nodes occurring in at most one hyperedge

2. Eliminate hyperedges that are empty or contained in other hyperedges

Checking Acyclicity

6
7

4

5

8

9

{8,9}

{1,3,4,5,6,7,8} {9,10,11}

{11,12}

{12,13}

{1,2,3}

Via the GYO-reduction (Graham, Yu and Ozsoyoglu)

1. Eliminate nodes occurring in at most one hyperedge

2. Eliminate hyperedges that are empty or contained in other hyperedges

Checking Acyclicity

6
7

4

5

8

{8,9}

{1,3,4,5,6,7,8} {9,10,11}

{11,12}

{12,13}

{1,2,3}

Via the GYO-reduction (Graham, Yu and Ozsoyoglu)

1. Eliminate nodes occurring in at most one hyperedge

2. Eliminate hyperedges that are empty or contained in other hyperedges

Checking Acyclicity

6
7

4

5

{8,9}

{1,3,4,5,6,7,8} {9,10,11}

{11,12}

{12,13}

{1,2,3}

Via the GYO-reduction (Graham, Yu and Ozsoyoglu)

1. Eliminate nodes occurring in at most one hyperedge

2. Eliminate hyperedges that are empty or contained in other hyperedges

Checking Acyclicity

{8,9}

{1,3,4,5,6,7,8} {9,10,11}

{11,12}

{12,13}

{1,2,3}

Via the GYO-reduction (Graham, Yu and Ozsoyoglu)

1. Eliminate nodes occurring in at most one hyperedge

2. Eliminate hyperedges that are empty or contained in other hyperedges

Checking Acyclicity

{8,9}

{1,3,4,5,6,7,8} {9,10,11}

{11,12}

{12,13}

{1,2,3}

Via the GYO-reduction (Graham, Yu and Ozsoyoglu)

1. Eliminate nodes occurring in at most one hyperedge

2. Eliminate hyperedges that are empty or contained in other hyperedges

empty hypergraph

Checking Acyclicity

Via the GYO-reduction (Graham, Yu and Ozsoyoglu)

1. Eliminate nodes occurring in at most one hyperedge

2. Eliminate hyperedges that are empty or contained in other hyperedges

Theorem: A hypergraph H is acyclic iff GYO(H) = ∅
⇓

checking whether H is acyclic is feasible in polynomial time, and if it is

the case, a join tree can be found in polynomial time

⇓
Theorem: ACYCLICITY is in PTIME

Checking Acyclicity

Theorem: ACYCLICITY is in PTIME

NOTE: actually, we can check whether a CQ is acyclic in time O(||Q||)

linear time in the size Q

Evaluating Acyclic CQs

NOTE: actually, if H(Q) is acyclic, then Q can be evaluated in time O(||D|| ⋅ ||Q||)

linear time in the size of D and Q

Theorem: ACQ-Evaluation is in PTIME

Yannakaki’s Algorithm

Given a database D and an acyclic Boolean CQ Q

1. Compute the join tree T of H(Q)

2. Assign to each node of T the corresponding relation of D

3. Compute semi-joins in a bottom up traversal of T

4. Return YES if the resulting relation at the root of T is non-empty;

otherwise, return NO

Dynamic programming algorithm over the join tree

Yannakaki’s Algorithm: Step 1

Q :- R1(x1,x2,x3), R2(x2,x3), R3(x2,x6), R4(x3), R5(x2,x4,x3)

{x2,x3}

{x1,x2,x3}{x2,x6}

{x2,x4,x3}{x3}

Yannakaki’s Algorithm: Step 2

x1 x2 x3

s1 c2 b1

s1 c1 b2

s3 c3 b1

s3 c1 b4

s2 c2 b3

x2 x4 x3

c2 a1 b1

c1 a1 b2

c1 a2 b2

x3

b1

b2

x2 x3

c1 b2

c2 b1

c4 b6

x2 x6

c1 d2

c1 d1

c3 d1

Yannakaki’s Algorithm: Step 3

x1 x2 x3

s1 c2 b1

s1 c1 b2

s3 c3 b1

s3 c1 b4

s2 c2 b3

x2 x4 x3

c2 a1 b1

c1 a1 b2

c1 a2 b2

x3

b1

b2

x2 x3

c1 b2

c2 b1

c4 b6

x2 x6

c1 d2

c1 d1

c3 d1

Yannakaki’s Algorithm: Step 3

x1 x2 x3

s1 c2 b1

s1 c1 b2

s3 c3 b1

s3 c1 b4

s2 c2 b3

x2 x4 x3

c2 a1 b1

c1 a1 b2

c1 a2 b2

x3

b1

b2

x2 x3

c1 b2

c2 b1

c4 b6

x2 x6

c1 d2

c1 d1

c3 d1

Yannakaki’s Algorithm: Step 3

x1 x2 x3

s1 c2 b1

s1 c1 b2

s3 c3 b1

s3 c1 b4

s2 c2 b3

x2 x4 x3

c2 a1 b1

c1 a1 b2

c1 a2 b2

x3

b1

b2

x2 x3

c1 b2

c2 b1

c4 b6

x2 x6

c1 d2

c1 d1

c3 d1

Yannakaki’s Algorithm: Step 3

x1 x2 x3

s1 c2 b1

s1 c1 b2

s3 c3 b1

s3 c1 b4

s2 c2 b3

x2 x4 x3

c2 a1 b1

c1 a1 b2

c1 a2 b2

x3

b1

b2

x2 x3

c1 b2

c2 b1

c4 b6

x2 x6

c1 d2

c1 d1

c3 d1

Yannakaki’s Algorithm: Step 3

x1 x2 x3

s1 c2 b1

s1 c1 b2

s3 c3 b1

s3 c1 b4

s2 c2 b3

x2 x4 x3

c2 a1 b1

c1 a1 b2

c1 a2 b2

x3

b1

b2

x2 x3

c1 b2

c2 b1

c4 b6

x2 x6

c1 d2

c1 d1

c3 d1

Yannakaki’s Algorithm: Step 4

x1 x2 x3

s1 c2 b1

s1 c1 b2

s3 c3 b1

s3 c1 b4

s2 c2 b3

x2 x4 x3

c2 a1 b1

c1 a1 b2

c1 a2 b2

x3

b1

b2

x2 x3

c1 b2

c2 b1

c4 b6

x2 x6

c1 d2

c1 d1

c3 d1

YES

Recap

• “Good” classes of CQs for which query evaluation is tractable - conditions

based on the graph or hypergraph of the CQ

• Acyclic CQs - their hypergraph is acyclic, can be checked in linear time

• Evaluating acyclic CQs is feasible in linear time (Yannakaki’s algorithm)

