THE UNIVERSITY
of EDINBURGH SQL HISTORY

Developed @ IBM Research in the 1970s
System R project

Advanced Database Systems
Spring 2026

Originally “SEQUEL": Structured English Query Language

Commercialised/popularised in the 1980s
Adopted by Oracle in the late 1970s
Lecture #02: prea

SQ L IBM released DB2 in 1983

ANSI standard in 1986. ISO in 1987

Structured Query Language
Current standard is SQL:2023

If you require this document in an alternative format, such as large print or a coloured background, please contact milos.nikolic@ed.ac.uk

1 2
4
’
SQL’S PERSISTENCE SQL PRoOs AND CONS
52 years old! Declarative!
1974 - Developed at IBM by Donald D. Chamberlin and Raymond F. Boyce Say what you want, not how to get it
Questioned repeatedly Implgmentgd widely »
) . With varying levels of efficiency, completeness
90's: Object-Oriented DBMS (OQL, etc.) Most DBMSs support at least SQL-92
2000's: XML (Xquery, Xpath, XSLT))
2010's: NoSQL & MapReduce Constrained
Not targeted at Turing-complete tasks
SQL keeps re-emerging as the standard Feature-rich
Even Hadoop, Spark etc. mostly used via SQL Many years of added features
May not be perfect, but it is useful Extensible: callouts to other languages, data sources
4

OUTLINE

Relational Terminology
Single-table Queries
Aggregations + Group By
Joins

Nested Queries

RELATIONAL TERMINOLOGY

Database: Set of named relations

Relation (Table):

Schema: description (“metadata”) Student(sid: int, name: text, dept: text)

Instance: collection of data satisfying the schema

sid name dept

12344 Jones CS
Tuple (record, row) = |123s5 Smith Physics

12366 Gold CS

Attribute (field, column) —’

RELATIONAL TABLES

Schema is fixed

Unique attribute names, attribute types are atomic
Student(sid: int, name: text, dept: text)

Instances can change often
In SQL, an instance is a multiset (bag) of tuples

name dept age
Jones CS 18
Smith Physics 21
Jones €S 18

SQL LANGUAGE

Three sublanguages

DDL Data Definition Language Define and modify schema
DML Data Manipulation Language Write queries intuitively
DCL Data Control Language Control access to data

RDBMS responsible for efficient evaluation
Choose and run algorithms for declarative queries

Choice of algorithm must not affect query answer

EXAMPLE DATABASE

Student(sid, name, dept, age) Enrolled(sid, cid, grade)

sid name dept age sid cid grade
12344 Jones CS 18 12344 INF-10080 65
12355 Smith Physics 23 12355 INF-11199 72
12366 Gold CS 21 12355 INF-11122 61
12366 INF-10080 80
12344 INF-11199 53

Course(cid, name, year)

INF-11199 Advanced Database Systems 2020
INF-10080 Introduction to Databases 2020
INF-11122 Foundations of Databases 2019
INF-11007 Data Mining and Exploration 2019

BASIC SINGLE-TABLE QUERIES

SELECT [DISTINCT] <column expression list>
FROM <single table>
[WHERE <predicate>]

SELECT *
FROM Student
WHERE age = 18

Get all 18-year-old students
Simplest version is straightforward

Produce all tuples in the table that match the predicate SELECT DISTINCT cid

FROM Enrolled
WHERE grade > 95

Output the expressions in the SELECT list

Expression can be a column reference, or
an arithmetic expression over column refs

Get IDs of courses with grades > 95

DISTINCT removes duplicate rows before output

10

12

ORDER BY ORDER BY <column*> [ASC|DESC]

Sort the output tuples by the values in one or more of their columns

SELECT sid, grade FROM Enrolled Sl @rEte

WHERE cid = ‘INF-11199’ 12344 53

ORDER BY grade 12399 72
12355 72
12311 76

Ascending order by default, but can be overridden

Can mix and match, lexicographically

sid grade
- 12311 76
SELECT sid, grade FROM Enrolled 12355 72
WHERE cid = ‘INF-11199’ 12399 72
ORDER BY grade DESC, sid ASC
12344 53

11

13

LimiT

LIMIT <count> [offset]

Limit the # of tuples returned in the output

sid grade
SELECT sid, grade FROM Enrolled 12344 53
WHERE cid = ‘INF-11199’ 12399 72
ORDER BY grade LIMIT 3 12355 72

Typically used with ORDER BY
Otherwise the output is non-deterministic. depends on the algo for query processing

Can set an offset to skip first records

sid grade
SELECT sid, grade FROM Enrolled 12399 72
WHERE cid = ‘INF-11199’ 12355 72
ORDER BY grade LIMIT 3 OFFSET 1 12311 76

12

13

AGGREGATES

Functions that return a summary (aggregate) of some arithmetic
expression from a bag of tuples

Get the average age of CS students Get the average age and # of CS students
SELECT AVG(age) AS avg_age SELECT AVG(age) AS avg_age,
FROM Student WHERE dept = ‘CS’ COUNT(sid) AS cnt
avg_age FROM Student WHERE dept = ‘CS’

Aggregate functions can only be used in the SELECT list

avg_age cnt

20.5 153

Other aggregates: SUM, COUNT, MIN, MAX

14

GROUP BY

Non-aggregated values in SELECT output clause must
appear in GROUP BY clause

FROM Student
GROUP BY dept

SELECT dept, AVG(age) x

SELECT dept, name, AVG(age)
FROM Student V
GROUP BY dept, name

GROUP BY

Get the average age per department

dept avg_age

SELECT dept, AVG(age) AS avg_age S 20.5
FROM Student Physics 21.1
GROUP BY dept Maths 19.8

Partition table into groups with the same GROUP BY column values

Can group by a list of columns

Produce an aggregate result per group
Cardinality of output = # of distinct group values

Can put grouping columns in the SELECT output list

15

FILTER GROUPS

Get the average age per department

SELECT dept, AVG(age) AS avg_age cs 20 5
FROM Student ohved 21}

GROUP BY dept yScs <
Maths 19.8

Get departments with average student age above 21

SELECT dept, AVG(age) AS avg_age

FROM Student dept avg_age
[WHERE avg_age > 21 | x Physics 21.1
GROUP BY dept

16

17

HAVING

Get departments with average student age above 21

SELECT dept, AVG(age) AS avg_age
FROM Student

GROUP BY dept

HAVING AVG(age) > 21

HAVING filters results after grouping and aggregation
Hence can contain anything that could go in the SELECT list
I.e., GROUP BY columns or aggregates (e.g., COUNT(*) > 5)

HAVING can only be used in aggregate queries

It's an optional clause

CONCEPTUAL SQL EVALUATION

SELECT [DISTINCT] <column expression list>
FROM <single table>

[WHERE <predicate>]

[GROUP BY <column list> [HAVING <predicate>]]

[ORDER BY <column list>] [LIMIT <count>]

FROM
®

WHERE

apply selection

GROUP BY
form groups & aggs

LIMIT « ORDER BY ‘ DISTINCT
limit # of output tuples sort output eliminate duplicates

Does not imply the query will actually be evaluated this way!

» HAVING
eliminate groups
@
« SELECT
project away columns

18

19

MULTIPLE-TABLE QUERIES

SELECT [DISTINCT] <column expression list>
FROM <tablel [AS t1], ..., tableN [AS tn]>

[WHERE <predicate>]

[GROUP BY <column list> [HAVING <predicate>]]

[ORDER BY <column list>] [LIMIT <count>]

FROM ’ WHERE » GROUP BY ‘ HAVING
table cross product apply selection form groups & aggs eliminate groups
A 2
ORDER BY DISTINCT SELECT

LIMIT
[rets] * | J

sort output eliminate duplicates

J o

project away columns

]

This evaluation strategy is almost always inefficient!

20

JOIN QUERY

Get the names and grades of students in INF-11199

21

Student(sid, name, dept, age)

SELECT S.name, E.grade £10 name Cept EES
FROM Student AS S, Enrolled AS E 12344 Jones €S 18
WHERE S.sid = E.sid 12355 Smith Physics 23
AND E.cid = ‘INF-11199 ame grade el 2
| Jomes 53 | Enrolled(sid, cid, grade)
Declarative computation sid cid grade
Let the DBMS figure out how to compute this query 234 NIum 0050 &5
-) 12355 INF-11199 72
Possible options: 12355 INF-11122 61
1) Cross product — filter on sid & cid — projection 12366 INF-10080 80
2) Filter on cid — cross product — filter on sid — projection 12344 INF-11199 53

3) Something else?

20

21

22

JOIN QUERY - ANOTHER SYNTAX

Get the names and grades of students in INF-11199

SELECT
FROM
WHERE
AND

S.name,
Student
S.sid =
E.cid =

E.grade

AS S, Enrolled AS E
E.sid

“INF-11199’

SELECT
FROM
ON
WHERE

S.name,
Student
S.sid =
E.cid

E.grade

S INNER JOIN Enrolled E
E.sid

‘INF-11199’

SELECT
FROM
WHERE

S.name,
Student
E.cid =

E.grade
S NATURAL JOIN Enrolled E
‘INF-11199’

All 3 queries are equivalent

Inner join what we've learned so far
INNER is optional here

NATURAL means equi-join for pairs of
attributes with the same name

JOIN VARIANTS

SELECT <column list>
FROM <table>

ON <qualification list>
WHERE

[INNER | NATURAL | { LEFT | RIGHT | FULL } OUTER] JOIN

The different types of outer joins determine what we do with rows

that don't match the join condition

23

22

LEFT OUTER JOIN

24

23

Student

sid _ name dept age SELECT S.name, E.grade

121 Jones cs 18 FROM Student S LEFT OUTER JOIN Enrolled E

122 Smith Physics 19 ON S.sid = E.sid

123 Gold cs 21

Enrolled Return all matched rows &
Jones 65

sid cid e ; . preserve all unmatched

121 INF-10080 65 ones rows from the table on the
Gold 72

123 INF-11199 72 ioi
Smith UL left of the join clause

121 INF-11122 61

201 INF-11199 53 Use NULLs in fields of

non-matching tuples

RIGHT OUTER JOIN

Student
sid name dept age
121 Jones CS 18
122 Smith Physics 19
123 Gold Cs 21
Enrolled
sid cid grade
121 INF-10080 65
123 INF-11199 72
121 INF-11122 61
201 INF-11199 53

SELECT S.name, E.grade
FROM Student S RIGHT OUTER JOIN Enrolled E
ON S.sid = E.sid

name grade

Jones 65
Jones 61
Gold 72
NULL 53

Return all matched rows &
preserve all unmatched
rows from the table on the

right of the join clause

25

24

25

FuLL OUTER JOIN

26

SELECT S.name, E.grade
FROM Student S FULL OUTER JOIN Enrolled E
ON S.sid = E.sid

Student

sid name dept age
121 Jones CS 18
122 Smith Physics 19
123 Gold CcS 21

Enrolled

Return all matched &
65 unmatched rows from

&1 the tables on both

72

UL sides of the join clause

N A Jones
sid cid grade
Jones
121 INF-10080 65
Gold
123 INF-11199 72
Smith
121 INF-11122 61
NULL
201 INF-11199 53

53

NESTED QUERIES

Queries containing other queries

They are often difficult to optimise

27

Inner queries can appear (almost) anywhere in query

Get the names of students enrolled in any course

Outer Query d SELECT S.name FROM Student S

WHERE S.sid IN

(SELECT E.sid FROM Enrolled E)

Inner Query

26

27

NESTED QUERIES

Get the names of students in INF-11199

SELECT S.name FROM Student S L
WHERE S.sid IN (
SELECT E.sid FROM Enrolled E
WHERE E.cid = ‘INF-11199’

This is a bit odd, but it is equivalent:

SELECT S.name FROM Student S
WHERE EXISTS (
SELECT E.sid FROM Enrolled E
WHERE E.cid = ‘INF-11199’
AND S.sid = E.sid)

28

“S.sid in the set of students that
take INF-11199”

Nested query with correlation on sid

Correlated subquery is recomputed for
each Student tuple

Seen so far: IN, EXISTS

29

MORE ON SET-COMPARISON OPERATORS

Can also have: NOT IN, NOT EXISTS, op ALL, op ANY

where op is a standard comparison operator (=, <>, I=, >, >=, <, <=)

ALL — Must satisfy expression for all rows in subquery

ANY — Must satisfy expression for at least one row in subquery

IN — Equivalent to = ANY()
NOT IN — Equivalent to ‘1= ALL()

EXISTS — At least one row is returned

Get the names of students in INF-11199

SELECT S.name FROM Student S
WHERE S.sid = ANY (
SELECT E.sid FROM Enrolled E
WHERE E.cid = ‘INF-11199’

28

29

SUMMARY

This was a crash course on SQL

Many aspects not covered though, only essential

SQL is a declarative language

Somebody must translate SQL to algorithms... but how?

The data structures and algorithms that make SQL possible also power:

NoSQL, data mining, scalable ML analytics,...
A toolbox for scalable computing!

That fun begins next week

30

