n ",

@\ THE UNIVERSITY
\#N/: of EDINBURGH

Advanced Database Systems
Spring 2026

Lecture #02:

SQL

If you require this document in an alternative format, such as large print or a coloured background, please contact milos.nikolic@ed.ac.uk

SQL HISTORY

Developed @ IBM Research in the 1970s

System R project
Originally “SEQUEL"; Structured English Query Language

Commercialised/popularised in the 1980s
Adopted by Oracle in the late 1970s
IBM released DB2 in 1983

ANSI standard in 1986. ISO in 1987

Structured Query Language
Current standard is SQL:2023

SQL'S PERSISTENCE

52 years old!
1974 - Developed at IBM by Donald D. Chamberlin and Raymond F. Boyce

Questioned repeatedly
90’s: Object-Oriented DBMS (OQL, etc.)
2000’s: XML (Xquery, Xpath, XSLT)
2010's: NoSQL & MapReduce

SQL keeps re-emerging as the standard
Even Hadoop, Spark etc. mostly used via SQL
May not be perfect, but it is useful

SQL PrROS AND CONS

Declarative!
Say what you want, not how to get it

Implemented widely
With varying levels of efficiency, completeness
Most DBMSs support at least SQL-92

Constrained
Not targeted at Turing-complete tasks

Feature-rich
Many years of added features
Extensible: callouts to other languages, data sources

OUTLINE

Relational Terminology
Single-table Queries
Aggregations + Group By
Joins

Nested Queries

RELATIONAL TERMINOLOGY

Database: Set of named relations

Relation (Table):
Schema: description (“metadata”) Student(sid: int, name: text, dept: text)

Instance: collection of data satisfying the schema

Tuple (record, row))

Attribute (field, column) —’

RELATIONAL TABLES

Schema is fixed

Unique attribute names, attribute types are atomic
Student(sid: 7nt, name: text, dept: text)

Instances can change often
In SQL, an instance is a multiset (bag) of tuples

name dept age
Jones CS 18
Smith Physics 21
Jones CS 18

SQL LANGUAGE

Three sublanguages

DDL

Data Definition Language

Define and modify schema

DML

Data Manipulation Language

Write queries intuitively

DCL

Data Control Language

Control access to data

RDBMS responsible for efficient evaluation

Choose and run algorithms for declarative queries

Choice of algorithm must not affect query answer

EXAMPLE DATABASE

Student(sid, name, dept, age) Enrolled(sid, cid, grade)
sid hame dept age sid cid grade
12344 Jones CS 18 12344 INF-10080 65
12355 Smith Physics 23 12355 INF-11199 12
12366 Gold CS 21 12355 INF-11122 61

12366 INF-10080 80
12344 INF-11199 53

Course(cid, name, year)
cid name year
INF-11199 Advanced Database Systems 2020
INF-10080 Introduction to Databases 2020
INF-11122 Foundations of Databases 2019
INF-11007 Data Mining and Exploration 2019

11

BASIC SINGLE-TABLE QUERIES

SELECT [DISTINCT] <column expression list>
FROM <single table>
[WHERE <predicate>]

Simplest version is straightforward
Produce all tuples in the table that match the predicate
Output the expressions in the SELECT list

Expression can be a column reference, or
an arithmetic expression over column refs

DISTINCT removes duplicate rows before output

SELECT =*
FROM Student
WHERE age = 18

Get all 18-year-old students

SELECT DISTINCT cid
FROM Enrolled
WHERE grade > 95

Get IDs of courses with grades > 95

12

ORDER BY ORDER BY <columnx> [ASC|DESC]

Sort the output tuples by the values in one or more of their columns

SELECT sid, grade FROM Enrolled sid grade
WHERE cid = ¢INF-11199’ 12344 53
ORDER BY grade 12399 72
12355 72
12311 76

Ascending order by default, but can be overridden

Can mix and match, lexicographically

sid grade
. 12311 76
SELECT sid, grade FROM Enrolled e —
WHERE cid = ‘INF-11199’
, 12399 72
ORDER BY grade DESC, sid ASC
12344 53

LIMIT

Limit the # of tuples returned in the output

SELECT sid, grade FROM Enrolled
WHERE cid = ‘INF-11199’
ORDER BY grade LIMIT 3

Typically used with ORDER BY

Otherwise the output is non-deterministic, depends on the algo for query processing

Can set an offset to skip first records

SELECT sid, grade FROM Enrolled
WHERE cid = ‘INF-11199’
ORDER BY grade LIMIT 3 OFFSET 1

LIMIT <count> [offset]

sid

12344

grade
53

12399

72

12355

12

sid
12399

grade
12

12355

12

12311

76

13

14

AGGREGATES

Functions that return a summary (aggregate) of some arithmetic
expression from a bag of tuples

Get the average age of (S students Get the average age and # of CS students
SELECT AVG(age) AS avg_age SELECT AVG(age) AS avg_age,
FROM Student WHERE dept = ‘CS’ COUNT(sid) AS cnt
avg_age FROM Student WHERE dept = ‘CS’
20.5 avg_age c¢nt
| | 20.5 153

Aggregate functions can only be used in the SELECT list

Other aggregates: SUM, COUNT, MIN, MAX

GROUP By

Get the average age per department

dept avg_age

SELECT dept, AVG(age) AS avg_age CS 20.5
FROM Student Physics 21.1

Partition table into groups with the same GROUP BY column values

Can group by a list of columns

Produce an aggregate result per group
Cardinality of output = # of distinct group values

Can put grouping columns in the SELECT output list

GROUP By

Non-aggregated values in SELECT output clause must
appear in GROUP BY clause

FROM Student

SELECT dept, |name| AVG(age) x
GROUP BY dept

SELECT dept, name, AVG(age)
FROM Student \/
GROUP BY dept, name

FILTER GROUPS

Get the average age per department

dept avg_age

SELECT dept, AVG(age) AS avg_age
FROM Student
GROUP BY dept

CS 20.5
Physics 21.1
Maths 19.8

Get departments with average student age above 21

SELECT dept, AVG(age) AS avg_age
FROM Student dept avg_age

WHERE avg_age > 21 x Physics 21.1
GROUP BY dept

HAVING

Get departments with average student age above 21

SELECT dept, AVG(age) AS avg_age
FROM Student

GROUP BY dept

HAVING AVG(age) > 21

HAVING filters results after grouping and aggregation
Hence can contain anything that could go in the SELECT list

l.e., GROUP BY columns or aggregates (e.g., COUNT(*) > 5)

HAVING can only be used in aggregate queries

It's an optional clause

18

19

CONCEPTUAL SQL EVALUATION

SELECT [DISTINCT] <column expression list>
FROM <single table>

[WHERE <predicate>]

[GROUP BY <column list> [HAVING <predicate>]]

[ORDER BY <column list>] [LIMIT <count>]

FROM » WHERE » GROUP BY » HAVING
Identify relation apply selection form groups & aggs eliminate groups

N

LIMIT « ORDER BY « DISTINCT « SELECT
limit # of output tuples sort output eliminate duplicates project away columns

Does not imply the query will actually be evaluated this way!

MULTIPLE-TABLE QUERIES

SELECT [DISTINCT] <column expression list>
FROM <tablel [AS t1], ..., tableN [AS tn]>

[WHERE <predicate>]

[GROUP BY <column list> [HAVING <predicate>]]

[ORDER BY <column list>] [LIMIT <count>]

FROM » WHERE » GROUP BY
table cross product apply selection form groups & aggs

K,

LIMIT ‘ ORDER BY « DISTINCT
limit # of output tuples sort output eliminate duplicates

This evaluation strategy is almost always inefficient!

) #

HAVING

eliminate groups

|

N

|

SELECT

project away columns

|

20

JOIN QUERY

Get the names and grades of students in INF-11199

SELECT S.name, E.grade
FROM Student AS S, Enrolled AS E
WHERE S.sid = E.sid

21

Student(sid, name, dept, age)

sid name dept age
12344 Jones CS 18
12355 Smith Physics 23
12366 Gold CS 21

AND E.cid = ‘INF-11199’ name grade
Smith 712
Jones 53

Declarative computation

Let the DBMS figure out how to compute this query

Possible options:

1) Cross product — filter on sid & cid — projection

2) Filter on cid — cross product — filter on sid — projection

3) Something else?

Enrolled(sid, cid, grade)

sid cid grade
12344 INF-10080 65
12355 INF-11199 12
12355 INF-11122 61
12366 INF-10080 80
12344 INF-11199 53

22

JOIN QUERY - ANOTHER SYNTAX

Get the names and grades of students in INF-11199

SELECT
FROM
WHERE
AND

S.name,
Student
S.sid =
E.cid

E.grade

AS S, Enrolled AS E
E.sid

‘INF-11199’

SELECT
FROM
ON
WHERE

S.name,
Student
S.sid =
E.cid =

E.grade

S INNER JOIN Enrolled E
E.sid

‘INF-11199’

SELECT
FROM
WHERE

S.name,

Student S NATURAL JOIN Enrolled E

E.cid =

E.grade

“‘INF-11199°

All 3 queries are equivalent

Inner join what we've learned so far
INNER is optional here

NATURAL means equi-join for pairs of
attributes with the same name

JOIN VARIANTS

SELECT <column list>

FROM <table>
[INNER | NATURAL | { LEFT | RIGHT | FULL } OUTER] JOIN
ON <qualification list>

WHERE . ..

The different types of outer joins determine what we do with rows

that don't match the join condition

23

LEFT OUTER JOIN

Student
sid name dept age SELECT S.name, E.grade
121 Jones CS 18 FROM Student S LEFT OUTER JOIN Enrolled E
122 Smith Physics 19 ON S.sid = E.sid
123 Gold CcS 21
Enrolled Return all matched rows &
Jones 65
sid cid , : . preserve all unmatched
121 INF-10080 65 ones rows from the table on the
Gold 72
123 INF-11199 72 i
Smith UL left of the join clause
121 INF-11122 61
201 INF-11199 53 Use NULLs in fields of

non-matching tuples

RIGHT OUTER JOIN

Student

sid name dept age SELECT S.name, E.grade

121 Jones CS 18 FROM Student S RIGHT OUTER JOIN Enrolled E

122 Smith Physics 19 ON S.sid = E.sid

123 Gold CS 21

Enrolled Return all matched rows &
Jones 65

sid cid , preserve all unmatched
J 61

121 INF-10080 65 ones rows from the table on the
Gold 72

123 INF-11199 72 i i0i
L - right of the join clause

121 INF-11122 61

201 INF-11199 53

FuLL OUTER JOIN

Student
sid name dept age SELECT S.name, E.grade
121 Jones CS 18 FROM Student S FULL OUTER JOIN Enrolled E
122 Smith Physics 19 ON S.sid = E.sid
123 Gold CS 21
Enrolled Return all matched &
Jones 65
sid cid , : . unmatched rows from
121 INF-10080 65 onee the tables on both
Gold 72
123 INF-11199 72 i i
Smith UL sides of the join clause
121 INF-11122 61
NULL 53
201 INF-11199 53

NESTED QUERIES

Queries containing other queries

They are often difficult to optimise

Inner queries can appear (almost) anywhere in query

Get the names of students enrolled in any course

WHERE S.sid IN

Outer Query SELECT S.name FROM Student S
(SELECT E.sid FROM Enrolled E)

L Inner Query

27

NESTED QUERIES

Get the names of students in INF-11199

SELECT S.name FROM Student S
WHERE S.sid IN (“S.sid in the set of students that
SELECT E.sid FROM Enrolled E take INF-11199"

WHERE E.cid = ‘INF-11199’

This is a bit odd, but it is equivalent:

SELECT S.name FROM Student S Nested query with correlation on sid
WHERE EXISTS (:
SELECT E.sid FROM Enrolled E Correlated subquery is recomputed for
WHERE E.cid = INF-11199’ each Student tuple
AND S.sid = E.sid)

MORE ON SET-COMPARISON OPERATORS

Seen so far; IN, EXISTS

Can also have: NOT IN, NOT EXISTS, op ALL, op ANY

where op is a standard comparison operator (=, <>, =, >, >=, <, <=)

ALL — Must satisfy expression for all rows in subquery

ANY — Must satisfy expression for at least one row in subquery

IN — Equivalent to ‘= ANY()’
NOT IN — Equivalent to ‘I= ALL()’

EXISTS — At least one row is returned

Get the names of students in INF-11199

29

SELECT S.name FROM Student S
WHERE S.sid = ANY (

SELECT E.sid FROM Enrolled E
WHERE E.cid = ‘INF-11199’

)

SUMMARY

This was a crash course on SQL

Many aspects not covered though, only essential

SQL is a declarative language

Somebody must translate SQL to algorithms... but how?

The data structures and algorithms that make SQL possible also power:
NoSQL, data mining, scalable ML analytics,...
A toolbox for scalable computing!

That fun begins next week

30

	Slide 1
	Slide 2: SQL History
	Slide 4: SQL’s Persistence
	Slide 5: SQL Pros and Cons
	Slide 6: Outline
	Slide 7: Relational Terminology
	Slide 8: Relational Tables
	Slide 9: SQL Language
	Slide 10: Example Database
	Slide 11: Basic Single-Table Queries
	Slide 12: Order By
	Slide 13: Limit
	Slide 14: Aggregates
	Slide 15: Group By
	Slide 16: Group By
	Slide 17: Filter Groups
	Slide 18: Having
	Slide 19: Conceptual SQL Evaluation
	Slide 20: Multiple-Table Queries
	Slide 21: Join Query
	Slide 22: Join Query – Another Syntax
	Slide 23: Join Variants
	Slide 24: Left Outer Join
	Slide 25: Right Outer Join
	Slide 26: Full Outer Join
	Slide 27: Nested Queries
	Slide 28: Nested Queries
	Slide 29: More on Set-Comparison Operators
	Slide 30: Summary

