
Advanced Database Systems
Spring 2026

Lecture #03:

Relational Algebra

R&G: Chapters 4.1 & 4.2

If you require this document in an alternative format, such as large print or a coloured background, please contact milos.nikolic@ed.ac.uk

QUERY EXECUTION OVERVIEW

2

SELECT S.name
FROM Student S, Enrolled E
WHERE S.sid = E.sid

AND E.cid = ‘INF-11199’

SQL Query

πS.name(σE.cid = ‘INF-11199’(

Student ⋈ S.sid = E.sid Enrolled))

Relational Algebra

Query Parser &
Optimiser

Equivalent to…

But actually will
produce plan with

operator code

π

⋈

σ

Student Enrolled

S.sid = E.sid

E.cid = ‘INF-11199’

Logical Query Plan

S.nameπ

⋈

σ

Student Enrolled

S.sid = E.sid

E.cid = ‘INF-11199’

Optimised Physical Query Plan

S.name

B+ tree

sort-merge join

scan

sorting

QUERY EXECUTION OVERVIEW

3

SELECT S.name
FROM Student S, Enrolled E
WHERE S.sid = E.sid

AND E.cid = ‘INF-11199’

SQL Query

πS.name(σE.cid = ‘INF-11199’(

Student ⋈ S.sid = E.sid Enrolled))

Relational Algebra

Declarative description of computation

Say what you want, not how to get it

Enables system to optimize the how

Foundation in formal query languages

Relational Calculus

Operational description of computation

Systems execute RA query plans

RELATIONAL QUERY LANGUAGES

Relational Calculus (basis for SQL)

Describe the result of computation

Based on first order logic

Tuple Relational Calculus (TRC)

Relational Algebra

Algebra on sets

Operational description of transformations

4

{ S | S ∈ Student ∃E ∈ Enrolled
(S.sid = E.sid ∧ E.cid = ‘INF-11199’) }

Are these two
equivalent?

Can we go from one
to the other?

CODD’S THEOREM

Established equivalence in expressivity between:

Relational Calculus

Relational Algebra

Why an important result?

Connects declarative representation of

queries with operational description

Constructive: we can compile SQL into relational algebra

5

Edgar F. “Ted” Codd
(1923 - 2003)

Turing Award 1981

RELATIONAL ALGEBRA

Algebra of operators on relation instances

Closed: result is also a relation instance

Enables rich composition!

Typed: input schema determines output schema

Can statically check whether queries are legal

6

π S.name(σE.cid = ‘INF-11199’(S ⋈ S.sid = E.sid E))

σ Selection

π Projection

⍴ Renaming

∪ Union

– Set Difference

× Cross Product

∩ Intersection

⋈ Join

RELATIONAL ALGEBRA AND SETS

Pure relational algebra has set semantics

No duplicate tuples in a relation instance

But can also be defined over bags (multisets)

SQL has multiset (bag) semantics

We will switch to multiset in the system discussion

7

SELECTION

Syntax: σpredicate (R)

Select a subset of rows (horizontal)

that satisfy a selection predicate

Can combine predicates using conjunctions / disjunctions

Output schema same as input

Duplicate elimination? Not needed

8

aid bid

a1 101

a2 102

a2 103

a3 104

R(aid, bid)

aid bid

a2 102

a2 103

σaid=’a2’ (R)

aid bid

a2 103

σaid=’a2’ ∧ bid > 102 (R)

PROJECTION

Syntax: πA1, A2, …, An (R)

Selects a subset of columns (vertical)

Schema determined by schema of attribute list

Set semantics → results in fewer rows

Real systems don’t automatically remove duplicates

Why?

1) Semantics: keep duplicates for aggregates

2) Performance: deduplication not free

9

aid bid

a1 101

a2 102

a2 103

a3 104

R(aid, bid)

aid

a1

a2

a3

π aid (R)

UNION

Syntax: R ∪ S

Two input relations must be compatible

Same number of fields

Fields in corresponding positions have same type

Duplicate elimination in practice (SQL)?

UNION – eliminates duplicates

UNION ALL – keeps duplicates

10

aid bid

a1 101

a2 102

a3 103

R(aid, bid)

R ∪ S

aid bid

a3 103

a4 104

a5 105

S(aid, bid)

aid bid

a1 101

a2 102

a3 103

a4 104

a5 105

R S R ∪ S

SET DIFFERENCE

Syntax: R – S

Same as with union, both input relations

must be compatible

Duplicate elimination? Not needed

SQL expression: EXCEPT

EXCEPT vs EXCEPT ALL

11

aid bid

a1 101

a2 102

a3 103

R(aid, bid)

aid bid

a3 103

a4 104

a5 105

S(aid, bid)

R – S

aid bid

a1 101

a2 102

R S SR–S

S – R

aid bid

a4 103

a5 105

CROSS PRODUCT

Syntax: R × S

Each row of R paired with each row of S

How many rows in result? |R|*|S|

Schema compatibility? Not needed

Duplicates? None generated

R × S has two bid attributes

Not allowed, leave them unnamed

Identify attributes by position

12

aid bid

a1 101

a2 102

a3 103

R(aid, bid)

R × S

bid cid

b3 23

b4 24

S(bid, cid)

aid (bid) (bid) cid

a1 101 b3 23

a1 101 b4 24

a2 102 b3 23

a2 102 b4 24

a3 103 b3 23

a3 103 b4 24

RENAMING (⍴ = “rho”)

Renames relations and their attributes

Note that relational algebra doesn’t require names

We could just use positional arguments

13

⍴ (Temp(2 → bid1, 3 → bid2), R × S)

Output Relation
Name

Renaming List
position → new name

Input
Expression

R × S
aid (bid) (bid) cid

a1 101 b3 23

a1 101 b4 24

a2 102 b3 23

a2 102 b4 24

aid bid1 bid2 cid

a1 101 b3 23

a1 101 b4 24

a2 102 b3 23

a2 102 b4 24

Temp

COMPOUND OPERATOR: INTERSECTION

Syntax: R ∩ S

Same as with union, both input relations

must be compatible

SQL expression: INTERSECT

Equivalent to: R – (R – S)

14

R S

S

R ∩ S
aid bid

a1 101

a2 102

a3 103

R(aid, bid)

aid bid

a3 103

a4 104

a5 105

S(aid, bid)

R ∩ S

aid bid

a3 103

COMPOUND OPERATOR: JOIN

Joins are compound operators (like intersection):

Generally, σθ (R × S)

Hierarchy of common kinds:

Theta Join (⋈θ): join on logical expression 𝜃

Equi-Join: theta join with theta being a conjunction of equalities

Natural Join (⋈): equi-join on all matching column names

Note: we will need to learn a good join algorithm

Avoid cross-product if we can!

15

THETA JOIN EXAMPLE

Note that output needs a rename operator!

16

sid name age

12344 Jones 18

12355 Smith 23

12366 Gold 21

Student

sid cid grade

12344 INF-10080 65

12355 INF-11199 72

Enrolled

(sid) name age (sid) cid grade

12344 Jones 18 12344 INF-10080 65

12355 Smith 23 12355 INF-11199 72

Student ⋈sid=sid Enrolled

THETA JOIN EXAMPLE 2

Example: Get senior students for each student

Student ⋈field3 < field6 Student (i.e., age < age2)

R ⋈θ S = 𝜎θ(R × S)

Output schema same as that of cross product

17

sid name age

12344 Jones 18

12355 Smith 23

12366 Gold 21

Student

(sid) (name) (age) (sid) (name) (age)

12344 Jones 18 12355 Smith 23

12344 Jones 18 12366 Gold 21

12366 Gold 21 12355 Smith 23

Student ⋈field3 < field6 Student

NATURAL JOIN

Syntax: R ⋈ S

Special case of equi-join in which equalities

are specified for all matching fields and

duplicate fields are projected away

Compute R × S

Select rows where fields appearing in

both relations have equal values

Project onto the set of all unique fields

18

aid bid

a1 101

a2 102

a3 103

R(aid, bid)

R ⋈ S

bid cid

101 c3

101 c4

105 c5

S(bid, cid)

aid bid cid

a1 101 c3

a1 101 c4

R ⋈ S = πunique fld. σ eq.matching fld. (R × S)

EXTRA OPERATORS

Group By / Aggregation (𝛾)

𝛾dept, AVG(age) (Student)

𝛾dept, AVG(age), COUNT(*) > 2 (Student) with selection (HAVING clause)

Duplicate Elimination (δ)

only under multiset (bag) interpretation of relational algebra

Assignment (R ⃪ S)

Sorting (𝜏)

Division (R ÷ S)

19

SUMMARY

Relational Algebra

A small set of operators mapping relations to relations

Operational, in the sense that you specify the explicit order of operations

A closed set of operators! Mix and match

Basic operators: σ, π, ⍴, ∪, –, ×

Important compound operators: ∩, ⋈

20

	Slide 1
	Slide 2: Query Execution Overview
	Slide 3: Query Execution Overview
	Slide 4: Relational Query Languages
	Slide 5: Codd’s Theorem
	Slide 6: Relational Algebra
	Slide 7: Relational Algebra and Sets
	Slide 8: Selection
	Slide 9: Projection
	Slide 10: Union
	Slide 11: Set Difference
	Slide 12: Cross Product
	Slide 13: Renaming (⍴ = “rho”)
	Slide 14: Compound Operator: Intersection
	Slide 15: Compound Operator: Join
	Slide 16: Theta Join Example
	Slide 17: Theta Join Example 2
	Slide 18: Natural Join
	Slide 19: Extra Operators
	Slide 20: Summary

