THE UNIVERSITY
of EDINBURGH

Advanced Database Systems
Spring 2026

Lecture #04:

HW & Disk Space Management

R&G: Chapters 1, 9.1, 9.3

If you require this document in an alternative format, such as large print or a coloured background, please contact milos.nikolic@ed.ac.uk

DBMS: BIG PICTURE

SQL clients interact with a DBMS SQL Client L
+~ N
1
You know how to write a SQL query ! i
1 1
1 1
How is a SQL query executed? i i
1
: Database i
i Management System 1
i i
1 1
1 1
1 1
1 1
1 1
1 _ 1
1 1
H Database i
\\ I'

DBMS: QUERY PLANNING

Parse, check, and verify the SQL query I SQL Client L
g N
I))
SELECT S.name 1 Query Planning 1
FROM Student S JOIN Enrolled E H i
ON S.sid = E.sid I i
WHERE E.cid = ‘INF-11199’ : :
i Database i
: Management System :
: . . . 1 1
Translate into an efficient relational ! !
query plan that can be executed i i
i i
1 e — 1
1 1
= =
\ 1

DBMS: OPERATOR EXECUTION

Execute a dataflow by operating on I SQL Client L
records and files i 1
! Query Planning !
1 1
ssortmg i Operator Execution i
.name 1 1
1 1
t- joil 1 1
e o : Patabase :
R 1 Management System 1
G B+ tree : :
E.cid=‘INF-11199’ 1 1
scan ~ : :
Student Enrolled : :
i I —— i
1 1
: =
\ 1
\ 4

DBMS: FILES & INDEX MANAGEMENT

Organise tables and records as

‘l SQL Client I_
groups of pages in a logical file {
! Query Planning
1
12355 Smith Physics 23 :
12366 Gold CS 2 ! Files & Index Management
i
¥ |
1
1
i
Q HER 1 ——
. mmm [Pazer [Page2 :
) i Database
Disk \

Database File

e

DBMS: BUFFER MANAGEMENT

Transfer data between disk and memory

I SQL Client L
”
[]
Buffer Pool : Query Planning
Directory I]
(1] | ! Operator Execution
mmm [Page2 i
! Files & Index Management
1
1
== 11 ————— - ! Buffer Management
i
Q HER 1 ——
. mmm [Pager [Page2 :
. 1 Database
Disk \
\s ___________________________ -’

Database File

e

DBMS: DISK SPACE MANAGEMENT

Translate page requests into reading
& writing physical bytes on devices 7

SQL Client

-
L

[;
! Query Planning
i
01010 10100 1 Operator Execution
N 11101 11010 |
S 10010 10101 01111 /7 1 .
N 01010 4 [l Files & Index Management
S 10110 ‘ i
N 4 i
. 7 i Buffer Management
\N 1
4 |
! Disk Space Management
1
! e ——
" H
° \ ! Database

Disk

e e

ARCHITECTURE OF A DBMS

Organised in layers SQL Client

L—

-

[)
Each layer abstracts the layer below i Query Planning
. 1
Performance assumptions !
! Files & Index Management
Example of good systems design !
! Buffer Management
1
1
i Disk Space Management
H e ——
1
|
\\ ___________________________ -’

e

DBMS: CONCURRENCY & RECOVERY

Two cross-cutting modules related to

-

SQL Client

—
4

4
)
storage and memory management ! Query Planning i
I 1
| |
1 1
i Files & Index Management i
Concurrency Control ! !
! Buffer Management !
i Disk Space Management |
1 —_— :
: 1
. :
\ 1
N e e e e _

Storage Media I SQL Client

-
Disk Space Management ! Query Planning

i :
Buffer l\/lanagement i Operator Execution

1
. 1 Files & Index Management
Fle Layout ,

|
Page Layout i

1

I Disk Space Management
Record Layout i S ——

1

|

k\ ___________________________ -

L—

e

DISK-ORIENTED ARCHITECTURE

Most database systems are designed for non-volatile disk storage®
The primary location of the database is on disks (HDD and/or SSD)
Data processing happens in volatile main memory

The DBMS responsible for moving data between disk and main memory

Major implications
Data stored on disk is not byte addressable. Instead, an API:
READ: transfer “page” of data from disk to RAM
WRITE: transfer “page” of data from RAM to disk

Disk reads & writes are very, very slow! = Must plan carefully!

* Volatile storage only maintains its data while the device is powered

10

11

WHY NOT STORE ALL IN MAIN MEMORY?

Costs too much

Cost of 1TB storage (2026): 40$ for HDD, 100$ for SSD, 6000% for RAM
High-end databases today in the petabyte range!
Roughly 60% of the cost of a production system is in the disks

Main memory is volatile

Obviously important if DB stops/crashes. We want data to be saved!

Some specialised systems do store entire databases in main memory
Faster than disk-oriented but with much higher cost/GB

Suitable for small databases

12

STORAGE HIERARCHY

CPU Registers

[X

CPU Caches

Volatile
Byte-Addressable

3 4
[X3

Non-Volatile
Block-Addressable

Faster
Smaller

Slower
Larger

STORAGE HIERARCHY

KB/MB

GB/TB

L X

Memory for active data LX]
(primary storage) ‘[DRAM 100ns GB

... I
0.1ms
Disk for main database

(secondary storage) 10ms B
Network Storage 30ms PB

14

13

14

ANATOMY OF A DiIsK

Platters rotate (say 15000 rpm)

Disk arm moves in or out to position
disk heads on a desired track

Tracks under heads make a “cylinder”
Only one head reads/writes at any one time

Block size is a multiple of (fixed) sector size

Sector = minimum storage unit (512B or 4KB)

i . .

ACCESSING A DISK PAGE

Data is stored and retrieved in units called disk blocks

Block size is determined by the filesystem (usually 4KB, sometimes up to 64KB)
Unlike RAM, time to retrieve a block depends on its location
Time to access (read/write) a disk block:

Seek time: moving disk arm to position disk heads on track

Rotational delay: waiting for target block to rotate under a head

Transfer time: actually moving data to/from disk surface

15

16

https://en.wikipedia.org/wiki/File:Harddrive-engineerguy.ogv

Seagate Cheetah 15K.7

4 disks, 8 heads, avg. 512 KB/track, 600GB capacity
rotational speed: 15 000 rpm

average seek time: 3.4 ms

transfer rate = 163 MB/s

Access time to read one block of size 8KB

Average seek time 3.40ms
Average rotational delay 1/2 - 1/15000 min 2.00ms
Transfer time 8KB / 163 MB/s 0.05ms
Total access time 5.45ms

Seek time and rotational delay dominate!

17

ARRANGING BLOCKS ON DISK

‘Next' block concept:

sequential blocks on same track, followed by
blocks on same cylinder, followed by

blocks on adjacent cylinder

Arrange file pages sequentially by ‘next’ on disk

Minimize seek and rotational delay

For a sequential scan, pre-fetch several blocks at a time!

Reading large consecutive blocks

“Amortises” seek time and rotational delay

rotation— ">

platter

SEQUENTIAL VS. RANDOM ACCESS

What about accessing 1000 blocks of size 8 KB
Random: 1000 - 5.45ms =5.45s

Sequential: 3.4ms + 2ms + 1000 - 0.05ms = 55ms
tracks store only 512KB = some additional (< 5ms) track-to-track seek time

Sequential I/0 orders of magnitude faster than random I/0

avoid random 1/0 at all cost

20

SOLID STATE DRIVES

Alternative to conventional hard disks
Data accessed in pages, internally pages are organised into blocks

Fine-grain reads (4-8 KB pages), coarse-grain writes (1-2MB blocks)

Issues in current generation (NAND)
Write amplification: Writing data in small pages causes erasing big blocks
Limited endurance: Only 2K-3K erasures before cell failure
Wear levelling: SSD controller needs to keep moving hot write units around

Price: SSD is 2-5x more expensive than HDD

19

20

21

SOLID STATE DRIVES

Read is fast and predictable

Single read access time: 30 ps
4KB random reads: ~500 MB/sec
Sequential reads: ~525 MB/sec

But write is not! Slower for random
Single write access time: 30 ps
4KB random writes: ~120 MB/sec
Sequential writes: ~480 MB/sec

Random access still slower than sequential access

22

SSD vs. HDD

SSD can achieve 1-10x the bandwidth (bytes/sec) of ideal HDD
Note: Ideal HDD spec numbers are hard to achieve

Expect 10-100x bandwidth for non-sequential reads

Locality matters for both
Reading/writing to “far away” blocks on HDD requires slow seek/rotation delay
Writing 2 “far away” blocks on SSD can require writing multiple much larger units

High-end flash drives are getting much better at this

And don't forget

SSD is 2-5x more expensive than HDD

21

24

BOTTOM LINE

Very large DBs: relatively traditional
Disk still offers the best cost/GB by a lot

SSDs improve performance and performance variance

Smaller DB story is changing quickly
SSDs win at the low end (modest DB sizes)
Many interesting databases fit in RAM

Lots of change brewing on the HW storage tech side
Byte-addressable persistent memory failed to replace DRAM
New memory technology likely to affect the design of future systems

We will focus on traditional RAM and disk

22

25

DATABASE STORAGE

Most DBMSs store data as one or more files on disk

Files consist of pages (loaded in memory), pages contain records

Data on disk is read & written in large chunks of sequential bytes
Block = Unit of transfer for disk read/write
Page = A common synonym for “block”
In some textbooks, “page” = a block-sized chunk of RAM
We will treat “block” and “page” as synonyms

1/0 operation = read/write disk operation

Sequential pages: reading “next” page is fastest

24

25

SYSTEM DESIGN GOALS

Goal: allow the DBMS to manage databases > available main memory

Disk reads/writes are expensive = must be managed carefully

Minimise disk I/0, maximise usage of data per I/0

Spatial control
Where to write pages on disk

Goal: keep pages often used together as physically close as possible on disk

Temporal control
When to read pages into memory and when to write them to disk

Goal: minimise the number of CPU stalls from having to read data from disk

26

26

DiISK SPACE MANAGEMENT

Lowest layer of DBMS, manages space on disk

SQL Client

i -
L—
’

Map pages to locations on disk ,

Load pages from disk to memory Query Planning

Save pages back to disk Operator Execution

Introduces the concept of a page Files & Index Management

Typical page size: 4 - 64KB (a multiple of 4KB) Buffer Management

Each page has a unique identifier: page ID Disk Space Management

Higher levels call upon this layer to:

Allocate/de-allocate a page

Database

e e,
e

Read/write a page

DISK SPACE MANAGEMENT: PAGE REQUESTS

Disk space manager can get requests for a sequence of pages

E.g., when higher levels execute a scan operator on a relation

Such requests are best satisfied by pages stored sequentially on disk
Physical details hidden from higher levels of system

Higher levels may “safely” assume Next Page is fast, so they will
simply expect sequential runs of pages to be quick to scan

Disk space manager aims to intelligently lay out data on disk

to meet the performance expectation of higher levels as best as possible

28

27

28

DISKk SPACE MANAGEMENT: IMPLEMENTATION

Using local filesystem (FS)
Allocate one large “contiguous” file on an empty disk
Rely on OS and FS that sequential pages in this file are physically contiguous on disk

A logical database “file” may span multiple FS files on multiple disks/machines
Disk space manager maintains a mapping from page IDs to physical locations

physical location = filename + offset within that file

The OS and other apps know nothing about the contents of these files
Only the DBMS knows how to decipher their contents

Early DBMSs in the 1980s used custom ‘filesystems’ on raw storage

30

SUMMARY

Magnetic disk and flash storage
Random access vs. sequential access (10x)

Physical data placement is important

Disk space management
Exposes data as a collection of pages
Pages: block-level organisation of bytes on disk
API to read/write pages to disk
Provides “next” locality

Abstracts device and file system details

,,I SQL Client

—
4

Query Planning
Operator Execution
Files & Index Management
Buffer Management

Disk Space Management

Database

i
e

31

