@\ THE UNIVERSITY
\#N/: of EDINBURGH

Advanced Database Systems
Spring 2026

Lecture #04:

HW & Disk Space Management

R&G: Chapters 1, 9.1, 9.3

If you require this document in an alternative format, such as large print or a coloured background, please contact milos.nikolic@ed.ac.uk

DBMS: BIG PICTURE

SQL clients interact with a DBMS
You know how to write a SQL query

How is a SQL query executed?

Y

il HEN I NN SN N SN S SN S S S S S S B S S S N . S . . E—,

SQL Client

Database
Management System

E Database j

F
/

‘_------------'

DBMS: QUERY PLANNING

Parse, check, and verify the SQL query

SELECT S.name
FROM Student S JOIN Enrolled E
ON S.sid = E.sid
WHERE E.cid = ‘INF-11199’

Translate into an efficient relational
query plan that can be executed

Y

il HEN I NN SN N SN S SN S S S S S S B S S S N . S . . E—,

’| SQL Client

Query Planning

Database
Management System

E Database j

F
/

‘_------------'

DBMS: OPERATOR EXECUTION

Execute a dataflow by operating on
records and files

scan /

Student

X

sorting
S.name

sort-merge join
S.sid = E.sid

G B+ tree
E.cid=“INF-11199’

N\
Enrolled

Y

il HEN I NN SN N SN S SN S S S S S S B S S S N . S . . E—,

\

SQL Client

Query Planning
Operator Execution

Database
Management System

E Database j

F
/

‘_------------'

DBMS: FILES & INDEX MANAGEMENT

Organise tables and records as
groups of pages in a logical file

sid name dept age
12344 Jones CS 18
12355 Smith Physics 23
12366 Gold CS 21
o T
° » BEE Page1 Page2
Disk

Database File

Y

il HEN I NN SN N SN S SN S S S S S S B S S S N . S . . E—,

\

SQL Client

Query Planning

Operator Execution

‘_------------'

Files & Index Management

E Database j

F
/

DBMS: BUFFER MANAGEMENT

Transfer data between disk and memory SQL Client

F
/

\

Y

Buffer Pool

Directory

Query Planning

Operator Execution

Files & Index Management

Buffer Management

E Database j

-------------'

Directory
Q T

il HEN I NN SN N SN S SN S S S S S S B S S S N . S . . E—,

Page1 Page2

Database File

DBMS: DISKk SPACE MANAGEMENT

Translate page requests into reading &

SQL Client

\

F
/

Y

writing physical bytes on devices
Query Planning

01010

10100 Operator Execution
\ 11101
\ 10010

N\

11010
01111 /
/

/
/
/

10101

Files & Index Management

01010
N\ 10110

\
Buffer Management

Ry
Q

Disk

Disk Space Management

E Database j

il HEN I NN SN N SN S SN S S S S S S B S S S N . S . . E—,

-------------'

ARCHITECTURE OF A DBMS

Organised in layers

Each layer abstracts the layer below
Manage complexity

Performance assumptions

Example of good systems design

Y

il HEN I NN SN N SN S SN S S S S S S B S S S N . S . . E—,

\

SQL Client

F
/

Query Planning
Operator Execution
Files & Index Management

Buffer Management

‘_------------'

Disk Space Management

E Database j

DBMS: CONCURRENCY & RECOVERY

Two cross-cutting modules related to SQL Client

\

F
/

Y

storage and memory management Query Planning

Operator Execution

Files & Index Management

Concurrency Control

Buffer Management

Recovery

Disk Space Management

E Database j

il HEN I NN SN N SN S SN S S S S S S B S S S N . S . . E—,

-------------'

OUTLINE

Storage Media

Disk Space Management
Buffer Management

File Layout

Page Layout

Record Layout

Y

il HEN I NN SN N SN S SN S S S S S S B S S S N . S . . E—,

\

SQL Client

Query Planning
Operator Execution
Files & Index Management

Buffer Management

-------------'

Disk Space Management

E Database j

F
/

10

11

DISK-ORIENTED ARCHITECTURE

Most database systems are designed for non-volatile disk storage™
The primary location of the database is on disks (HDD and/or SSD)
Data processing happens in volatile main memory

The DBMS responsible for moving data between disk and main memory

Major implications
Data stored on disk is not byte addressable. Instead, an API:

READ: transfer “page” of data from disk to RAM
WRITE: transfer “page” of data from RAM to disk

Disk reads & writes are very, very slow! = Must plan carefully!

*Volatile storage only maintains its data while the device is powered

WHY NOT STORE ALL IN MAIN MEMORY?

Costs too much

Cost of 1TB storage (2026): 40% for HDD, 100% for SSD, 6000% for RAM
High-end databases today in the petabyte range!
Roughly 60% of the cost of a production system is in the disks

Main memory is volatile

Obviously important if DB stops/crashes. We want data to be saved!

Some specialised systems do store entire databases in main memory
Faster than disk-oriented but with much higher cost/GB

Suitable for small databases

12

STORAGE HIERARCHY

Volatile
Byte-Addressable

Non-Volatile
Block-Addressable

CPU Registers
9

CPU Caches

Netwo rk Storage

13

Faster
Smaller

Slower
Larger

14

Latency | Capacity

4 A

100ns GB

STORAGE HIERARCHY

Memory for active data
(primary storage)

0.Tms GB/TB

Disk for main database

(secondary storage) - 10ms B

i Network Storage 30ms PB

ANATOMY OF A DISK

Platters rotate (say 15000 rpm)

Disk arm moves in or out to position
disk heads on a desired track

Tracks under heads make a “cylinder”
Only one head reads/writes at any one time

Block size is a multiple of (fixed) sector size

Sector = minimum storage unit (512B or 4KB)

Video on how disk drives work

rotation< ">

platter

—

15

https://en.wikipedia.org/wiki/File:Harddrive-engineerguy.ogv

ACCESSING A DISK PAGE

Data is stored and retrieved in units called disk blocks

Block size is determined by the filesystem (usually 4KB, sometimes up to 64KB)

Unlike RAM, time to retrieve a block depends on its location

Time to access (read/write) a disk block:
Seek time: moving disk arm to position disk heads on track
Rotational delay: waiting for target block to rotate under a head

Transfer time: actually moving data to/from disk surface

16

Seagate Cheetah 15K.7

4 disks, 8 heads, avg. 512 KB/track, 600GB capacity
rotational speed: 15 000 rpm

average seek time: 3.4 ms

transfer rate = 163 MB/s

Access time to read one block of size 8KB

Average seek time 3.40ms
Average rotational delay 1/2 - 1/15000min 2.00ms
Transfer time 8KB / 163 MB/s 0.05ms
Total access time 5.45ms

Seek time and rotational delay dominate!

18

SEQUENTIAL VS. RANDOM ACCESS

What about accessing 1000 blocks of size 8 KB
Random: 1000 - 545ms=5.45s
Sequential: 3.4ms +2ms + 1000 - 0.05ms = 55ms

tracks store only 512KB = some additional (< 5ms) track-to-track seek time

Sequential I/0 orders of magnitude faster than random 1/0

avoid random I/0 at all cost

19

ARRANGING BLOCKS ON DISK

rotatloncob o

‘Next’ block concept: < —

. _‘_/ /
sequential blocks on same track, followed by @‘w"/

=

blocks on same cylinder, followed b S
ylinder, followed by i —‘y,

blocks on adjacent cylinder g ==

platter heads

Arrange file pages sequentially by ‘next’ on disk

Minimize seek and rotational delay

For a sequential scan, pre-fetch several blocks at a time!

Reading large consecutive blocks

“Amortises” seek time and rotational delay

SOLID STATE DRIVES

Alternative to conventional hard disks

Data accessed in pages, internally pages are organised into blocks

Fine-grain reads (4-8KB pages), coarse-grain writes (1-2MB blocks)

Issues in current generation (NAND)
Write amplification: Writing data in small pages causes erasing big blocks
Limited endurance: Only 2K-3K erasures before cell failure

Wear levelling: SSD controller needs to keep moving hot write units around

Price: SSD is 2-5x more expensive than HDD

20

SOLID STATE DRIVES

Read is fast and predictable

Single read access time: 30 ps
4KB random reads: ~500 MB/sec
Sequential reads: ~525 MB/sec

But write is not! Slower for random

Single write access time: 30 ps
4KB random writes: ~120 MB/sec
Sequential writes: ~480 MB/sec

Random access still slower than sequential access

21

SSD vs. HDD

SSD can achieve 1-10x the bandwidth (bytes/sec) of ideal HDD

Note: Ideal HDD spec numbers are hard to achieve

Expect 10-100x bandwidth for non-sequential reads

Locality matters for both

Reading/writing to “far away” blocks on HDD requires slow seek/rotation delay
Writing 2 “far away” blocks on SSD can require writing multiple much larger units

High-end flash drives are getting much better at this

And don't forget

SSD is 2-5x more expensive than HDD

22

BOTTOM LINE

Very large DBs: relatively traditional
Disk still offers the best cost/GB by a lot

SSDs improve performance and performance variance

Smaller DB story is changing quickly
SSDs win at the low end (modest DB sizes)

Many interesting databases fit in RAM

Lots of change brewing on the HW storage tech side

Byte-addressable persistent memory failed to replace DRAM

New memory technology likely to affect the design of future systems

We will focus on traditional RAM and disk

24

DATABASE STORAGE

Most DBMSs store data as one or more files on disk

Files consist of pages (loaded in memory), pages contain records

Data on disk is read & written in large chunks of sequential bytes

Block = Unit of transfer for disk read/write

Page = A common synonym for “block”
In some textbooks, “page” = a block-sized chunk of RAM

We will treat “block” and “page” as synonyms

|/0 operation = read/write disk operation

Sequential pages: reading “next” page is fastest

25

26

SYSTEM DESIGN GOALS

Goal: allow the DBMS to manage databases > available main memory

Disk reads/writes are expensive = must be managed carefully

Minimise disk 1/0, maximise usage of data per I/0

Spatial control

Where to write pages on disk
Goal: keep pages often used together as physically close as possible on disk

Temporal control
When to read pages into memory and when to write them to disk

Goal: minimise the number of CPU stalls from having to read data from disk

27

DISK SPACE MANAGEMENT

Lowest layer of DBMS, manages space on disk

Map pages to locations on disk ,—I SQL Client I\
Load pages from disk to memory ! E
Save pages back to disk i i
Introduces the concept of a page i i
Typical page size: 4 - 64KB (a multiple of 4KB) i i
Each page has a unique identifier: page ID i i
Higher levels call upon this layer to: i E j i
Allocate/de-allocate a page l\ Jatabase j

Read/write a page

28

DISK SPACE MANAGEMENT: PAGE REQUESTS

Disk space manager can get requests for a sequence of pages

E.g., when higher levels execute a scan operator on a relation

Such requests are best satisfied by pages stored sequentially on disk

Physical details hidden from higher levels of system

Higher levels may “safely” assume Next Page is fast, so they will
simply expect sequential runs of pages to be quick to scan

Disk space manager aims to intelligently lay out data on disk

to meet the performance expectation of higher levels as best as possible

DISK SPACE MANAGEMENT: IMPLEMENTATION

Using local filesystem (FS)

Allocate one large “contiguous” file on an empty disk
Rely on OS and FS that sequential pages in this file are physically contiguous on disk

A logical database “file” may span multiple FS files on multiple disks/machines

Disk space manager maintains a mapping from page IDs to physical locations

physical location = filename + offset within that file

The OS and other apps know nothing about the contents of these files

Only the DBMS knows how to decipher their contents

Early DBMSs in the 1980s used custom ‘filesystems’ on raw storage

30

SUMMARY

Magnetic disk and flash storage
Random access vs. sequential access (10x)

Physical data placement is important

Disk space management
Exposes data as a collection of pages
Pages: block-level organisation of bytes on disk
API to read/write pages to disk
Provides “next” locality

Abstracts device and file system details

S
. -

,—----------~

SQL Client

Query Planning
Operator Execution
Files & Index Management

Buffer Management

-----------'

Disk Space Management

E Database j

31

F
4

	Slide 1
	Slide 2: DBMS: Big Picture
	Slide 3: DBMS: Query Planning
	Slide 4: DBMS: Operator Execution
	Slide 5: DBMS: Files & Index Management
	Slide 6: DBMS: Buffer Management
	Slide 7: DBMS: Disk Space Management
	Slide 8: Architecture of a DBMS
	Slide 9: DBMS: Concurrency & Recovery
	Slide 10: Outline
	Slide 11: Disk-Oriented Architecture
	Slide 12: Why Not Store All in Main Memory?
	Slide 13: Storage Hierarchy
	Slide 14: Storage Hierarchy
	Slide 15: Anatomy of a Disk
	Slide 16: Accessing a Disk Page
	Slide 17
	Slide 18: Sequential vs. Random Access
	Slide 19: Arranging Blocks on Disk
	Slide 20: Solid State Drives
	Slide 21: Solid State Drives
	Slide 22: SSD vs. HDD
	Slide 24: Bottom Line
	Slide 25: Database Storage
	Slide 26: System Design Goals
	Slide 27: Disk Space Management
	Slide 28: Disk Space Management: Page Requests
	Slide 30: Disk Space Management: Implementation
	Slide 31: Summary

