
Advanced Database Systems
Spring 2026

Lecture #04:

HW & Disk Space Management

R&G: Chapters 1, 9.1, 9.3

If you require this document in an alternative format, such as large print or a coloured background, please contact milos.nikolic@ed.ac.uk

DBMS: BIG PICTURE

SQL clients interact with a DBMS

You know how to write a SQL query

How is a SQL query executed?

2

Database

SQL Cl ient

Database
Management System

DBMS: QUERY PLANNING

Parse, check, and verify the SQL query

Translate into an efficient relational

query plan that can be executed

3

Query Planning

Database

SQL Cl ient

Database
Management System

SELECT S.name
 FROM Student S JOIN Enrolled E
 ON S.sid = E.sid
 WHERE E.cid = ‘INF-11199’

DBMS: OPERATOR EXECUTION

Execute a dataflow by operating on

records and files

4

Query Planning

Database

SQL Cl ient

Database
Management System

Operator Executionπ

⋈

σ

Student Enrolled

S.sid = E.sid

E.cid = ‘INF-11199’

S.name

B+ tree

sort-merge join

scan

sorting

DBMS: FILES & INDEX MANAGEMENT

Organise tables and records as

groups of pages in a logical file

5

Query Planning

Database

SQL Cl ient

Operator Execution

Fi les & Index Management

sid name dept age

12344 Jones CS 18

12355 Smith Physics 23

12366 Gold CS 21

Page1

HeaderDirectory

Page2

Header

Database File

Disk

DBMS: BUFFER MANAGEMENT

Transfer data between disk and memory

6

Buffer Management

Fi les & Index Management

Operator Execution

Query Planning

Database

SQL Cl ient

Page1

HeaderDirectory

Page2

Header

Page2

HeaderDirectory

Database File

Disk

Buffer Pool

Memory

DBMS: DISK SPACE MANAGEMENT

Translate page requests into reading &

writing physical bytes on devices

7

Buffer Management

Fi les & Index Management

Operator Execution

Query Planning

Database

SQL Cl ient

Disk Space Management

Disk

01010

11101
10010 10101

01010
10110

10100

11010
01111

ARCHITECTURE OF A DBMS

Organised in layers

Each layer abstracts the layer below

Manage complexity

Performance assumptions

Example of good systems design

8

Disk Space Management

Buffer Management

Fi les & Index Management

Operator Execution

Query Planning

Database

SQL Cl ient

DBMS: CONCURRENCY & RECOVERY

Two cross-cutting modules related to

storage and memory management

9

Disk Space Management

Buffer Management

Fi les & Index Management

Operator Execution

Query Planning

Database

SQL Cl ient

Recovery

Concurrency Control

OUTLINE

Storage Media

Disk Space Management

Buffer Management

File Layout

Page Layout

Record Layout

10

Disk Space Management

Buffer Management

Fi les & Index Management

Operator Execution

Query Planning

Database

SQL Cl ient

DISK-ORIENTED ARCHITECTURE

Most database systems are designed for non-volatile disk storage*

The primary location of the database is on disks (HDD and/or SSD)

Data processing happens in volatile main memory

The DBMS responsible for moving data between disk and main memory

Major implications

Data stored on disk is not byte addressable. Instead, an API:

READ: transfer “page” of data from disk to RAM

WRITE: transfer “page” of data from RAM to disk

Disk reads & writes are very, very slow! ⇒ Must plan carefully!

11

* Volatile storage only maintains its data while the device is powered

WHY NOT STORE ALL IN MAIN MEMORY?

Costs too much

Cost of 1TB storage (2026): 40$ for HDD, 100$ for SSD, 6000$ for RAM

High-end databases today in the petabyte range!

Roughly 60% of the cost of a production system is in the disks

Main memory is volatile

Obviously important if DB stops/crashes. We want data to be saved!

Some specialised systems do store entire databases in main memory

Faster than disk-oriented but with much higher cost/GB

Suitable for small databases

12

STORAGE HIERARCHY

13

CPU Registers

CPU Caches

DRAM

SSD

HDD

Network Storage

Volatile
Byte-Addressable

Non-Volatile
Block-Addressable

Faster
Smaller

Slower
Larger

STORAGE HIERARCHY

14

CPU Registers

CPU Caches

DRAM

SSD

HDD

Network Storage

Latency Capacity

< 1ns B

< 10ns KB/MB

100ns GB

0.1ms GB/TB

10ms TB

30ms PB

Memory for active data
(primary storage)

Disk for main database
(secondary storage)

ANATOMY OF A DISK

15

Platters rotate (say 15000 rpm)

Disk arm moves in or out to position

disk heads on a desired track

Tracks under heads make a “cylinder”

Only one head reads/writes at any one time

Block size is a multiple of (fixed) sector size

Sector = minimum storage unit (512 B or 4 KB)

Video on how disk drives work

https://en.wikipedia.org/wiki/File:Harddrive-engineerguy.ogv

ACCESSING A DISK PAGE

Data is stored and retrieved in units called disk blocks

Block size is determined by the filesystem (usually 4 KB, sometimes up to 64 KB)

Unlike RAM, time to retrieve a block depends on its location

Time to access (read/write) a disk block:

Seek time: moving disk arm to position disk heads on track

Rotational delay: waiting for target block to rotate under a head

Transfer time: actually moving data to/from disk surface

16

Access time to read one block of size 8KB

Seek time and rotational delay dominate!

17Seagate Cheetah 15K.7

4 disks, 8 heads, avg. 512 KB/track, 600GB capacity

rotational speed: 15 000 rpm

average seek time: 3.4 ms

transfer rate ≈ 163 MB/s

Average seek time 3.40 ms

Average rotational delay 1/2 · 1/15000 min 2.00 ms

Transfer time 8KB / 163 MB/s 0.05 ms

Total access time 5.45 ms

SEQUENTIAL VS. RANDOM ACCESS

What about accessing 1000 blocks of size 8 KB

Random: 1000 · 5.45 ms = 5.45 s

Sequential: 3.4 ms + 2 ms + 1000 · 0.05 ms ≈ 55 ms

tracks store only 512KB ⟹ some additional (< 5 ms) track-to-track seek time

Sequential I/O orders of magnitude faster than random I/O

18

avoid random I/O at all cost

‘Next’ block concept:

sequential blocks on same track, followed by

blocks on same cylinder, followed by

blocks on adjacent cylinder

Arrange file pages sequentially by ‘next’ on disk

Minimize seek and rotational delay

For a sequential scan, pre-fetch several blocks at a time!

Reading large consecutive blocks

“Amortises” seek time and rotational delay

19

ARRANGING BLOCKS ON DISK

SOLID STATE DRIVES

Alternative to conventional hard disks

Data accessed in pages, internally pages are organised into blocks

Fine-grain reads (4-8 KB pages), coarse-grain writes (1-2 MB blocks)

Issues in current generation (NAND)

Write amplification: Writing data in small pages causes erasing big blocks

Limited endurance: Only 2K-3K erasures before cell failure

Wear levelling: SSD controller needs to keep moving hot write units around

Price: SSD is 2-5x more expensive than HDD

20

SOLID STATE DRIVES

Read is fast and predictable

Single read access time: 30 µs

4KB random reads: ~500 MB/sec

Sequential reads: ~525 MB/sec

But write is not! Slower for random

Single write access time: 30 µs

4KB random writes: ~120 MB/sec

Sequential writes: ~480 MB/sec

Random access still slower than sequential access

21

SSD VS. HDD

SSD can achieve 1-10x the bandwidth (bytes/sec) of ideal HDD

Note: Ideal HDD spec numbers are hard to achieve

Expect 10-100x bandwidth for non-sequential reads

Locality matters for both

Reading/writing to “far away” blocks on HDD requires slow seek/rotation delay

Writing 2 “far away” blocks on SSD can require writing multiple much larger units

High-end flash drives are getting much better at this

And don’t forget

SSD is 2-5x more expensive than HDD

22

BOTTOM LINE

Very large DBs: relatively traditional

Disk still offers the best cost/GB by a lot

SSDs improve performance and performance variance

Smaller DB story is changing quickly

SSDs win at the low end (modest DB sizes)

Many interesting databases fit in RAM

Lots of change brewing on the HW storage tech side

Byte-addressable persistent memory failed to replace DRAM

New memory technology likely to affect the design of future systems

We will focus on traditional RAM and disk

24

DATABASE STORAGE

Most DBMSs store data as one or more files on disk

Files consist of pages (loaded in memory), pages contain records

Data on disk is read & written in large chunks of sequential bytes

Block = Unit of transfer for disk read/write

Page = A common synonym for “block”

In some textbooks, “page” = a block-sized chunk of RAM

We will treat “block” and “page” as synonyms

I/O operation = read/write disk operation

Sequential pages: reading “next” page is fastest

25

SYSTEM DESIGN GOALS

Goal: allow the DBMS to manage databases > available main memory

Disk reads/writes are expensive ⟹ must be managed carefully

Minimise disk I/O, maximise usage of data per I/O

Spatial control

Where to write pages on disk

Goal: keep pages often used together as physically close as possible on disk

Temporal control

When to read pages into memory and when to write them to disk

Goal: minimise the number of CPU stalls from having to read data from disk

26

DISK SPACE MANAGEMENT

Lowest layer of DBMS, manages space on disk

Map pages to locations on disk

Load pages from disk to memory

Save pages back to disk

Introduces the concept of a page

Typical page size: 4 – 64KB (a multiple of 4KB)

Each page has a unique identifier: page ID

Higher levels call upon this layer to:

Allocate/de-allocate a page

Read/write a page

27

Disk Space Management

Buff er Managemen t

F i les & Index Management

Operator Execution

Query P lannin g

Database

SQ L Cl ient

DISK SPACE MANAGEMENT: PAGE REQUESTS

Disk space manager can get requests for a sequence of pages

E.g., when higher levels execute a scan operator on a relation

Such requests are best satisfied by pages stored sequentially on disk

Physical details hidden from higher levels of system

Higher levels may “safely” assume Next Page is fast, so they will

simply expect sequential runs of pages to be quick to scan

Disk space manager aims to intelligently lay out data on disk

to meet the performance expectation of higher levels as best as possible

28

D ISK SPACE MANAGEMENT: IMPLEMENTATION

Using local filesystem (FS)

Allocate one large “contiguous” file on an empty disk

Rely on OS and FS that sequential pages in this file are physically contiguous on disk

A logical database “file” may span multiple FS files on multiple disks/machines

Disk space manager maintains a mapping from page IDs to physical locations

physical location = filename + offset within that file

The OS and other apps know nothing about the contents of these files

Only the DBMS knows how to decipher their contents

Early DBMSs in the 1980s used custom ‘filesystems’ on raw storage

30

SUMMARY

Magnetic disk and flash storage

Random access vs. sequential access (10x)

Physical data placement is important

Disk space management

Exposes data as a collection of pages

Pages: block-level organisation of bytes on disk

API to read/write pages to disk

Provides “next” locality

Abstracts device and file system details

31

Disk Space Management

Buff er Managemen t

F i les & Index Management

Operator Execution

Query P lannin g

Database

SQ L Cl ient

	Slide 1
	Slide 2: DBMS: Big Picture
	Slide 3: DBMS: Query Planning
	Slide 4: DBMS: Operator Execution
	Slide 5: DBMS: Files & Index Management
	Slide 6: DBMS: Buffer Management
	Slide 7: DBMS: Disk Space Management
	Slide 8: Architecture of a DBMS
	Slide 9: DBMS: Concurrency & Recovery
	Slide 10: Outline
	Slide 11: Disk-Oriented Architecture
	Slide 12: Why Not Store All in Main Memory?
	Slide 13: Storage Hierarchy
	Slide 14: Storage Hierarchy
	Slide 15: Anatomy of a Disk
	Slide 16: Accessing a Disk Page
	Slide 17
	Slide 18: Sequential vs. Random Access
	Slide 19: Arranging Blocks on Disk
	Slide 20: Solid State Drives
	Slide 21: Solid State Drives
	Slide 22: SSD vs. HDD
	Slide 24: Bottom Line
	Slide 25: Database Storage
	Slide 26: System Design Goals
	Slide 27: Disk Space Management
	Slide 28: Disk Space Management: Page Requests
	Slide 30: Disk Space Management: Implementation
	Slide 31: Summary

